
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

A HIGHLY ADAPTABLE GENERIC EVENT-BASED
MESSAGE CHANNEL DESIGN FOR LOOSELY

COUPLING SOFTWARE MODULES

by

Cihat Eryigit

March 2002

 Thesis Advisor: Geoffrey Xie
 Second Reader: Chris Eagle

Report Documentation Page

Report Date
29 Mar 2002

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
A Highly Adaptable Geeneric Event-Based Message
Channel Design for Loosely Coupling Software Modules

Contract Number

Grant Number

Program Element Number

Author(s)
Eryigit, Cihat

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Naval Postgradaute School Monterey, California

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
175

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A HIGHLY ADAPTABLE GENERIC EVENT-
BASED MESSAGE CHANNEL DESIGN FOR LOOSELY COUPLING
SOFTWARE MODULES
6. AUTHOR(S) Eryigit, Cihat

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DARPA and NASA

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER
 G417

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
 Statement A

13. ABSTRACT (maximum 200 words)

 Component-based software engineering is an emerging software development approach based on the fundamentals of

object-oriented technology. This approach moves programmers’ focus from component development to component assembly.

Event-based programming is one of the techniques that can be used to assemble software components into applications.

 In this thesis, a new, generic, highly adaptable and flexible event channel has been designed and implemented. The main

product is a Java utility package, called “channel package”, which should help Java application developers create or enhance

large systems using an event-based programming approach. The new channel design has several demonstrated performance

advantages over existing event channel implementations. The flexibility and adaptability of the channel package has also been

validated by a successful upgrade of the channel mechanism of the SAAM prototype system.

15. NUMBER OF
PAGES

176

14. SUBJECT TERMS Event Programming, Event Channel, The Server and Agent based Active
network Management (SAAM) Architecture, Inter-object communication.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

A HIGHLY ADAPTABLE GENERIC EVENT-BASED MESSAGE CHANNEL
DESIGN FOR LOOSELY COUPLING SOFTWARE MODULES

Cihat Eryigit

Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author: Cihat Eryigit

Approved by: Geoffrey Xie, Advisor

C. Eagle, Second Reader

C. Eagle, Chairman

 Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Component-based software engineering is an emerging software development

approach based on the fundamentals of object-oriented technology. This approach moves

programmers’ focus from component development to component assembly. Event-based

programming is one of the techniques that can be used to assemble software components

into applications.

In this thesis, a new, generic, highly adaptable and flexible event channel has been

designed and implemented. The main product is a Java utility package, called “channel

package”, which should help Java application developers create or enhance large systems

using an event-based programming approach. The new channel design has several

demonstrated performance advantages over existing event channel implementations. The

flexibility and adaptability of the channel package has also been validated by a successful

upgrade of the channel mechanism of the SAAM prototype system.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SAAM PROJECT AND SAAM CHANNEL MODEL.................................2
B. SCOPE OF THIS THESIS..3
C. ORGANIZATION OF THIS THESIS...4

II. BACKGROUND ..5
A. JAVA EVENT MODEL ..5

1. Java 1.0 Event Model...5
2. Java 1.1 Event Model...7

B. CORBA EVENT MODEL ..11
1. Object Management Group (OMG)...11
2. Corba...12
3. CORBA Event Service...13

a. The Push Model ..14
b. The Pull Model ..15
c. Mixing the Push and Pull Model in a Single System16
d. Types of Event Communication ...16

4. CORBA Notification Service ..17
a. Filter ..18
b. Quality of Service (QoS) ...18
c. Structured Events..19

5. Conclusion ..20
C. SAAM EVENT CHANNEL MODEL..21

1. SAAM Channel ..21

III. CHANNEL PERFORMANCE METRICS AND EVALUATION OF
EXISTING SAAM CHANNEL MODEL ..25
A. CHANNEL PERFORMANCE METRICS AND QUALITATIVE

OBJECTITIVES ..25
1. Channel Throughput (R) ...25
2. Channel Work Rate (W) ..26
3. Channel Access Delay (D) ...26
4. Event Talk Time (Tt) ..26
5. Thread Count (C) ...27
6. Adaptability of Channel ..28
7. Scalability of Channel..28
8. Manageability of Channel ...29
9. Functional Flexibility ...29
10. Ease of Use ..29

a. Easy Creation of Channel...30
b. Meaningful Method Names ..30
c. Easy Configuration of Channel ...30

 viii

d. Sufficient and Understandable Method Overriding..............30
e. Conflicts Between Methods ..30
f. Conflicts Between Parameters in a Method...........................30
g. Documentation..31

B. TEST OF SAAM CHANNEL ...31
1. Channel Throughput and Work Rate ..31
2. Channel Access Delay..32
3. Event Talk Time ...34
4. Thread Count ...36
5. Manageability and Scalability of SAAM Channel..........................36
6. Adaptability and Functional Flexibility of SAAM Channel38
7. Ease of Use of SAAM Channel ...38

IV. NEW CHANNEL MODEL AND CHANNEL PACKAGE39
A. INTRODUCTION..39
B. FEATURES OF NEW CHANNEL DESIGN..39

1. Generic Event Structure ..39
2. Event Buffering ..40
3. Event and Channel Participant Priority ..40
4. Event Delivery Order...40
5. Event Filtering ..40
6. Self-Dispatching ...40
7. Duplex Communication...40
8. Concatenating Channels..41

C. CHANNEL PACKAGE...41
1. ChannelEvent Class...41
2. ChannelListener Interface ..42
3. ChannelFilter Interface ...43
4. ChannelScheduler Interface ...44
5. ChannelListenerItem Class...45
6. ChannelEventFilter Class ...46
7. Schedulers ...49

a. FIFOScheduler Class ...49
b. PerTalker_RR_Scheduler Class...49
c. PriorityScheduler Class ..49

8. Channel Class...50
a. Creating a Channel Object ...50
b. Adding and Removing Listeners to Channel50
c. Adding and Removing Talkers to Channel............................51
d. Talking on Channel ..52
e. Event Dispatching...52
f. Event Filtering ..53
g. Listener Self-Dispatching ...54
h. Duplex Communication..55
i. Concatenating Channels...55

9. ChannelAccessAuthority Interface ..56

 ix

10. ChannelManager Class ...56

V. TEST AND RESULTS ..59
A. EVALUATION OF NEW CHANNEL DESIGN ..59

1. Channel Throughput and Work Rate ..59
2. Channel Access Delay and Event Talk Time61
3. Scalability and Thread Count ...62
4. Adaptability and Functional Flexibility of New Channel63
5. Manageability ...63
6. Ease of Use ..64

a. Easy Channel Management..64
b. Easy Self-Dispatching...64

B. INTEGRATION OF CHANNEL PACKAGE AND SAAM
PROTOTYPE...65
1. Removing Obsolete Classes and Interfaces65
2. PermissionTableEntry Class...66
3. Changes to ControlExecutive Class ...67
4. Reducing the Number of Channels ..67
5. Event Priorities...69
6. Additions to SAAM GUI ...70

VI. CONCLUSION ..71
A. LESSONS LEARNED ...71

1. Programming with Threads ..71
2. Integration with SAAM Prototype ...71

B. FUTURE WORK...72
1. Communication Between Distributed Applications72
2. Automatic Sense for Self-Dispatching ..72

APPENDIX A. CHANNEL PACKAGE...73

APPENDIX B. THE ADDITIONAL CLASS FOR SAAM PROTOTYPE151

LIST OF REFERENCES ..155

INITIAL DISTRIBUTION LIST...157

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 2.1 Button Event Process in Java 1.0 Event Model ...6
Figure 2.2 Event Life Cycles in Java 1.1...9
Figure 2.3 Java Event Class Hierarchy..11
Figure 2.4 ORB–to-ORB Communication..12
Figure 2.5 Push Model ..15
Figure 2.6 Pull Model..15
Figure 2.7 Mixed Model..16
Figure 2.8 SAAM Channel Concept ...22
Figure 3.1 Test Bed For Studying Impact of Listener Event Handling Time on

Channel Throughput ..31
Figure 3.2 SAAM Channel Throughput and Work Rate versus Listener Event

Handling Time ...32
Figure 3.3 Test Bed for Measuring SAAM Channel Access Delay..................................33
Figure 3.4 Average Access Delay versus Number of Channel Talkers33
Figure 3.5 SAAM Channel Access Delay versus Event Handling Time34
Figure 3.6 Event Talk Time Versus The Number of Talkers..35
Figure 3.7 Test Bed for Measuring SAAM Channel Event Talk Time35
Figure 3.8 Event Talk Time Versus Event Handling Time...36
Figure 3.9 Event Concatenation in SAAM Channels..37
Figure 3.10 Two-way communication with SAAM channel ..38
Figure 4.1 Channel Event Structure ..42
Figure 4.2 Channel Scheduler ...45
Figure 4.3 Channel Listener Item..45
Figure 4.4 Self-dispatching ...46
Figure 4.5 ChannelEventFilter Filtering Process ...48
Figure 4.6 Per Talker Round-Robin Scheduler ...49
Figure 4.7 Channel Event Dispatching..53
Figure 4.8 Channel Event Filtering Process ..54
Figure 4.9 Two-way Event Communication ...55
Figure 4.10 Concatenating Channels...55
Figure 5.1 Test Bed For Studying Impact of Self-Dispatching on Channel

Throughput and Work Rate..59
Figure 5.2a Effect of Self-Dispatching on Channel Throughput ..60
Figure 5.2b Effect of Self-Dispatching on Channel Work Rate..60
Figure 5.3 Event Talk Time versus Number of Talkers ..62
Figure 5.4 Channel Access Delay versus Number of Talkers...62
Figure 5.5 Encapsulating SAAM Events in ChannelEvent Structure66
Figure 5.6 Necessary Channels for A New Interface on Existing SAAM Prototype68
Figure 5.7 Snapshot of New Channel Debug Window ...70

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 5.1 New Channel Structure in SAAM Prototype ...69

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Professor Geoffrey Xie and LCDR

Chris Eagle for their guidance and help throughout this thesis research.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Component oriented programming is an emerging technology based on the

fundamentals of object-oriented technology. Component-oriented programming and

design patterns have revo lutionized software development. With the decomposition of

monolithically built systems into independently alterable and extensible components,

methodologies from other engineering disciplines are being successfully applied to

software development. [Ref 1]

Assembly of components is becoming an increasingly common approach to

development in the software industry. This is due in large part to its promise of

considerably more productive programming. This increase in productivity results from a

greater degree of independence between the development of one component and that of

the other components, as well as individual component independence from the

development of the larger overall assembly itself. Users of a component need only be

concerned with its interface — the abstraction, or functionality, it provides — and need

not be aware of the implementation underlying that function. Developers of a component

need not be aware of the bigger picture of its use — their implementation simply needs to

fulfill the functional obligations of the contract constituted by its interface. Different

components can be developed by different teams, at different times, at different vendors

or enterprises. [Ref 2]

Event-based programming is one of the techniques that can be used to assemble

software components into applications. In this approach, components exchange

information in an asynchronous manner. A component that produces output data does not

communicate directly with the data consumer(s) to move the data. Instead, it calls up an

independent delivery service (typically a system mechanism) for the data transport. The

delivery service requires the data, along with pertinent information about its producer and

consumer(s), to be encapsulated in generic container objects called events. A data-

producing component is also referred to as an event source, a consumer is referred to as

an event listener, and the delivery service as an event dispatcher. For ease of

identification and handling, events are often classified based on functionality into

2

different types, with events of the same type tagged by the same unique identifier. Thus,

a component can be an event source, a listener, or both, albeit for different event types.

Software components should be coupled as loosely as possible to maximize

system modularity and to support dynamic update and replacement of components.

However, in existing event handling models, event sources and event listeners are often

tightly coupled. For example, the Java Event Delegation model requires that an event

listener must be registered with a specific event source to be notified of events generated

by that event source. This methodology results in a direct linkage between an event

source and its listeners. As such, it is cumbersome to replace the event source, having to

reestablish the linkage.

Another drawback of existing event models is that they are generally designed for

communication between GUI components and event handlers. This causes limitations

and problems when we try to adapt those event models to communication between

software components other than GUI components.

A. SAAM PROJECT AND SAAM CHANNEL MODEL

The goal of the Server and Agent based Active network Management (SAAM)

project is to generate a solution that will provide a guaranteed quality of service (QoS)

while maintaining the relative simplicity and robustness of the underlying TCP/IP

architecture. SAAM seeks to provide this QoS by introducing an additional network

service that, when requested, can assist applications by reserving the necessary network

resources. The SAAM architecture is designed to allow network engineers to

incrementally replace existing internal infrastructure. [Ref 3]

A Java-based SAAM prototype has been built incrementally. The prototype

consists of modular, self-aware, agent-based components. These components are loosely

coupled, based on a novel event model called the SAAM Channel Model. In this model,

the event delivery mechanism is implemented in the user domain and in the form of

application-specific event channels. Each channel serves as a public communication

medium for a particular set of components that perform a particular set of functions. This

3

association of channel with functionality eliminates the need for any direct linkage

between event source and listener.

The current SAAM channel model was implemented by NPS graduates Dean

Vrable and John Yarger in their thesis “The Server and Agent based Active network

Management (SAAM) Architecture: Enabling Integrated Services”. The implementation

provides event dispatching between SAAM components. The SAAM channel model

offers several benefits over the standard Java Delegation Event Model by allowing

delivery of events from one or more event sources (called talkers in the SAAM channel

model) to one or more event listeners and by allowing event listeners to register with a

channel that has no talkers. The details of SAAM Channel model will be described in

Chapter 2.

However, the current SAAM Channel implementation has several major

shortcomings. It is not a general-purpose utility as it supports only an application-specific

event object. It has no event buffering capability and the performance is not optimized.

For example, when an event is generated the thread of the event source is blocked

unnecessarily until that event is delivered to all listeners. Further, the model does not

support quality of service nor give a programmer a choice of dispatching events to

multiple listeners in a specific order.

B. SCOPE OF THIS THESIS

The primary goal of this thesis is to identify and address the shortcomings of the

current SAAM channel implementation. The thesis develops a highly configurable

channel to loosely couple software components, following the event-based programming

paradigm. This channel implementation supports multiple types of event objects and

allows a programmer to choose different event dispatching schedules based on event

priorities and the properties of the channel participants. Several performance metrics are

defined for evaluating different event channel implementations, and the performance of

the new channel implementation is optimized with respect to those metrics.

4

C. ORGANIZATION OF THIS THESIS

The remaining part of this thesis is organized into the following chapters.

• Chapter II: Background. Provides information about the Java Event Model,

the CORBA Event and Notification Service, and the SAAM Channel Model.

• Chapter III: Channel Performance Metrics and Evaluation Of Existing SAAM

Channel Implementation. Defines and explains the channel performance metrics

used in this thesis and shows some experimental results on the performance of the

existing SAAM channel implementation measured by these metrics.

• Chapter IV: New Channel Design and Java Channel Package. Describes the

new channel design and implementation, and explains the classes and interfaces in

the resulting Java channel package.

• Chapter V: Tests and Results. Presents results of performance tests of the new

channel implementation and describes the integration of the new Java channel

package into the existing SAAM prototype.

• Chapter VI: Conclusion. Summarizes the results from this thesis and outlines

possible future work.

5

 II. BACKGROUND

It is useful to consider some related event models before describing the new

channel design. The Java event model, the CORBA event service, and the current SAAM

channel model are described here.

A. JAVA EVENT MODEL

1. Java 1.0 Event Model

The Java 1.0 event model provided a methodology for processing events

implemented through Java 1.0.2. It was superseded by the Java 1.1 event model with the

release of JDK 1.1 in 1997.

Under the Java 1.0 event model, every type of event is encapsulated in a single

class, the Event class, which is contained in the java.awt package. An event object

contains information about the type of event it represents, when the event was generated,

where the event occurred, and what keys were pressed when the event was generated.

In Java 1.0 event model, event types are limited and an event was delivered only

to the component that generated it or one of its parent containers. The event is handed to

the component’s handleEvent method. The handleEvent method calls an event handler

method based on the type of event it is processing. For example, if an action event is sent

to the handleEvent method, the method will in turn call the action method. The event

handler method will return a value of true if the event was completely processed or

false if it was not. If the handleEvent cannot dispatch the event, the event is

automatically forwarded to the component’s container. If the container does not handle

the event, it passes the event on to its parent container, and so on. In this way, events are

propagated up the containment hierarchy until they are either consumed or reach the top

level. If an event reaches the top level and a proper handler is still not found, the event

will be discarded. Figure 2.1 illustrates how a button event would be processed with the

Java 1.0 event model.

6

The system provides a default implementation for each of the event handling

methods. The default implementations do nothing and return the value false. It is

straightforward to override one or more of these methods to provide the desired event-

processing methodology.

Figure 2.1 Button Event Process in Java 1.0 Event Model

One of the drawbacks of the Java 1.0 event model is that the event handler

methods are defined in the Component class, and as such any Component subclasses

can override these methods. This means the event handling tasks must be performed by

the GUI components themselves. It is very difficult to decouple the event handling code

from the GUI code.

Another drawback of this model is there is no filtering of events. Events are

always delivered to the components regardless of whether the components actually

No

No

Yes

Yes

Button Peer

Frame

Panel

Button

Consumed?

Consumed? End

ActionEvent

7

handle them or not. This can be a serious performance problem, particularly with high-

frequency event types. [Ref 4]

There is also no way to use this event model for inter-object communication

because the model restricts an event within the scope of one Component class object.

2. Java 1.1 Event Model

Deficiencies of the Java 1.0 event model became readily apparent. It wasn’t very

efficient to have the system search for the target component every time an event was

generated. Another problem was the event handling code was explicitly tied to the GUI

code creating inheritance problems. For example, instead of using one Button class for

all button objects, an application might have to create a Button subclass that would quit

when pressed, another Button subclass that would open a file when pressed, and so on.

One of the significant changes from Java 1.0 to 1.1 was the way events were

handled. The Java 1.1 event model employs a concept called delegation and cleans up

many deficiencies of the Java 1.0 event model. An event source generates the event and

then delegates the event handling process to another piece of code. The event-handling

object can be completely separate from the event source. Under this model any class can

serve as the event handler. [Ref 4]

An event object is an instance of a subclass of java.util.EventObject; it

holds information about the event. The EventObject class serves mainly to identify

event objects; the only information it contains is a reference to the event source (the

object that generated the event). [Ref 5]

In the Java 1.1 event model, an event source delivers an event only to registered

listener objects. Listeners that are not registered with the event source do not receive that

event. For each of the events an object can generate it maintains a list of listeners that are

registered to receive the event. The object registers a listener by adding a reference to the

listener to the proper listener list(s). This is done using one of the object’s add-listener

methods, passing the method a reference to the listener object as an argument. An object

deregisters or disconnects from an event listener by removing the listener from its listener

8

list(s). This is accomplished by calling one of the object’s remove-listener methods. [Ref

4]

An event is delivered by passing it as an argument to the receiving object’s event

handler method. ActionEvents, for example, are always delivered to a method called

actionPerformed in the receiver. For each type of event, there is a corresponding listener

interface that prescribes the method(s) an event handler must provide to receive the event.

In this case, any object that receives ActionEvents must implement the

ActionListener interface.

All listener interfaces are subinterfaces of the java.util.EventListener,

which is an empty interface. It exists only to help the complier identify listener interfaces.

Listener interfaces are required for a number of reasons. First, they help to identify

objects that are capable of receiving a given type of event. This way we can give the

event handler methods friendly, descriptive names and still make it easy for

documentation, tools, and humans to recognize them in a class. Second, listener

interfaces are useful because several methods can be specified for an event listener. For

example, the FocusListener interface contains two methods:

• abstract void focusGained (FocusEvent event)

• abstract void focusLost (FocusEvent event)

Although these methods both take a FocusEvent as an argument, they

correspond to different reasons for firing the event. In the example, the reason is whether

the FocusEvent received or lost the focus. Even thought he event parameter passed to

the methods contains enough information to determine whether the focus was gained or

lost, requiring two methods, the FocusListener interface minimizes the effort.

Specifically, if the focusGained method is called, it indicates that the event type was

FOCUS_GAINED. [Ref 5]

Under the Java 1.0 event model, the dispatching and processing of events was a

linear process. An event was sent to a single target component. If the event was not

9

completely processed by that component, it could be sent to another component, but the

system was not able to broadcast an event to multiple event listeners simultaneously.

Under the Java 1.1 event model, events can be sent to any number of event handler

objects. Any listener class that is registered with the source component would receive the

event.

Figure 2.2 shows the life cycle for events that are subclasses of the AWTEvent

class. The dispatchEvent and processEvent methods take an AWTEvent object as an

argument. However, many of the event classes contained in the java.swing.event

package are not subclasses of AWTEvent, but instead they inherit directly from

EventObject. The objects that generate these events will also define a fireEvent method

that causes a given event to be delivered to all listeners in the event’s listener list.

Figure 2.2 Event Life Cycles in Java 1.1

Event Source

System
Event
Queue

dispatchEvent()

processEvent() Any listeners or enabled
components?

Specific event process
method

Registered event listeners and
enabled components

Discard Event

No

Yes

10

A system event queue is used to store newly generated events until they are

dispatched by the dispatchEvent method. Normally, the operation of the system event

queue is transparent to the user. It does what it does in the background, automatically.

The EventQueue class encapsulates the Java event queue. It is possible to look into, and

even manipulate, the system event queue via the EventQueue class.

All event-handling code executes in a unique thread, called the event-dispatching

thread. It is the event-dispatching thread that calls any event listener methods. The event-

dispatching thread retrieves and processes events from the system event queue in a First-

In-First-Out (FIFO) fashion. It finishes executing an event handler’s code before

invoking the next event handler. One reason this is done is to keep the component in sync

with the component display and to block other activities on a component while an event

is being processed. For instance, when a button is pressed it will appear to sink into its

container display and its color will change. While the ActionEvent that is generated is

being processed, the event-dispatching thread will block any other user interactions with

the button.

The Java API provides a large selection of event and listener classes. It also

provides the basic building blocks for creating application-specific event classes and

event listeners. One can define a new event class either from scratch, using the high- level

event superclasses, EventObject and AWTEvent, or write a subclass of an existing

EventObject or AWTEvent subclass. The event and support class hierarchy is shown in

Figure 2.3 [Ref 4].

11

Figure 2.3 Java Event Class Hierarchy

B. CORBA EVENT MODEL

1. Object Management Group (OMG)

The Object Management Group is an international organization supported by over

800 members including information system vendors, software developers, and users. It

was founded in 1989. OMG promotes the theory and practice of object-oriented

technology in software development. The organization’s charter includes the

establishment of industry guidelines and object management specifications to provide a

common framework for application development. The primary goal is to achieve high

reusability, portability, and interoperability of object-based software in distributed,

Object
java.lang

EventObject
java.util

Event Support Classes
java.beans

javax.swing.event
javax.swing.undo

PropertyChangeEvent
java.beans

AWTEvent
 java.awt.event

Swing Event
Classes

javax.swing.event

Other Event
Classes

java.beans.beancontext
java.awt.dnd

javax.sound.sampled
javax.naming.event
javax.naming.ldap

AWT Event Classes
java.awt.event

Swing Event Classes
javax.swing.event

Swing Event Classes
javax.swing.event

12

heterogeneous environments. Conformance to these specifications makes it possible to

develop a heterogeneous applications environment across all major hardware platforms

and operating systems. [Ref 6]

2. Corba

CORBA is the acronym for Common Object Request Broker Architecture,

OMG’s open, vendor- independent architecture and infrastructure established to enable

object-oriented computer applications to work together over networks. CORBA is the

Object Management Group’s answer to the need for interoperability among rapidly

proliferating hardware and software products. It allows applications to communicate with

one another no matter where they are located or who has designed them.

The CORBA specification only defines a set of conventions and protocols that

must be followed by CORBA implementations. It is left to vendors and developers to

translate this specification into a working implementation. CORBA does not make any

restriction on language usage or underlying operating systems.

Because CORBA is language independent, it relies on an Interface Definition

Language (IDL) to express how clients will make a request for a service.

A client communicates to a server object through an object reference. This is a

pointer to the object that allows for operations and data access requests to be sent from

the client to the server via an Object Request Broker (ORB).

Figure 2.4 ORB–to-ORB Communication

remote

ORB 1

local

Skeleton Client

Object

 ORB 2

Skeleton Client

Object

13

An ORB knows whether an incoming request should be routed to local

implementations or to another ORB running on a different machine. When a request

reaches the ORB for which it is intended, the request is passed to an object adapter. The

Portable Object Adapter (POA) forms a link between an object’s implementation and its

presence (reference) on the ORB.

It is the IDL compiler’s job to turn IDL definitions into stub and skeleton files.

The stubs and skeletons are all language and ORB dependent. In a case in which one is

developing a heterogeneous application, the same IDL file may be used to generate the

stubs and skeletons for each language and ORB implementation.

 The stubs generated by the compiler will be used by the client processes to

communicate with the server. A skeleton file is the companion of a stub. It is the

skeleton’s job to receive requests from the ORB, call the proper implementation, and

return the results. [Ref 7]

3. CORBA Event Service

A standard CORBA request results in synchronous execution of an operation by

an object. If the operation defines parameters or return values, data is communicated

between the client and the server. In some scenarios, a more decoupled communication

model between objects is required. For example, several documents are linked to a

spreadsheet. The documents are interested in knowing when the values of certain cells

have changed. When the value of one of the cell changes, the documents update their

presentations accordingly. Furthermore, if a document is unavailable because of a failure,

it is still interested in any changes to the cells and wants to be notified of those changes

when it recovers. [Ref 6]

The CORBA event service decouples the communication between objects. The

event service defines two roles for objects: the supplier role and the consumer role.

Suppliers produce event data and consumers process event data. Event data are

communicated between suppliers and consumers by issuing standard CORBA requests.

There are two approaches to initiating event communication in CORBA. They are

called the push model and pull model. The push model allows a supplier of events to

14

initiate the transfer of the event data to consumers. The pull model allows a consumer of

events to request the event data from a supplier. In the push model, the supplier is taking

the initiative; in the pull model, the consumer is taking the initiative.

An event channel is an intervening object that allows multiple suppliers to

communicate with multiple consumers asynchronously. An event channel is both a

supplier and a consumer of events. Event channels are standard CORBA objects and

communication with an event channel can be accomplished using standard CORBA

requests. An event channel mediates the transfer of events between the suppliers and

consumers as follows:

• The event channel allows consumers to register interest in events, and stores

this registration information

• The channel accepts incoming events from suppliers.

• The channel forwards supplier-generated events to registered consumers.

Suppliers and consumers connect via the event channel and not directly to each

other. From a supplier’s perspective, the event channel appears as a single consumer;

from a consumer’s perspective, the event channel appears as a single supplier. In this

way, the event channel decouples supplier and consumers.

Any number of suppliers can issue events to any number of consumers using a

single event channel. There is no correlation between the number of suppliers and the

number of consumers, and new suppliers or consumers can connect to more than one

event channel.

a. The Push Model

In the push model a supplier generates events and actively passes them to

a consumer. In this model a consumer passively waits for events to arrive.

15

Figure 2.5 Push Model

In this architecture, a supplier initiates the transfer of an event by invoking

an IDL operation on an object in the event channel. The event channel invokes a similar

operation on an object in each consumer that has registered with the channel.

b. The Pull Model

In the pull model, a consumer actively requests that a supplier generate an

event. In this model, the supplier waits for a pull requests to arrive. When a pull request

arrives, event data is generated by the supplier and returned to the pulling consumer.

Figure 2.6 Pull Model

In this architecture, a consumer initiates the transfer of an event by

invoking an IDL operation on an object in the event channel application. The event

channel then invokes a similar operation on an object in each supplier. The event data is

Push Supplier 1

Push Supplier 2

Push Supplier n

EVENT CHANNEL

Push Consumer 1

Push Consumer 2

Push Consumer m
Event Propagation

Pull Supplier 2

Pull Supplier n

Pull Supplier 1

EVENT CHANNEL

Pull Consumer 1

Pull Consumer 2

Pull Consumer m

Event Propagation

16

returned from suppliers to the event channel and then from the event channel to the

consumer, which initiated the transfer.

c. Mixing the Push and Pull Model in a Single System

Because suppliers and consumers are completely decoupled by an event

channel, the Push and Pull models can be mixed in a single system. For example,

suppliers may connect to an event channel using the Push model, while consumers

connect using the Pull model, as shown in Figure 2.7.

In this case, both suppliers and consumers must participate in initiating

event transfer. A supplier invokes an operation on an object in the event channel to

transfer an event to the channel. A consumer then invokes another operation on an event

channel object to transfer the event data from channel. Unlike the case in which

consumers connect using the Pull model, the event channel takes no initiative in

forwarding the event. The event channel stores events supplied by the push supplier until

some pull consumer requests an event, or until a push consumer connects to the channel.

Figure 2.7 Mixed Model

d. Types of Event Communication

The CORBA Event Service maps an event to a successfully completed

sequence of operation calls. The operation and the sequence of calls are clearly defined

for both Push and Pull models, and data related to an event can be passed as operation

Push Supplier 1

Push Supplier 2

Push Supplier n

EVENT CHANNEL

Event Propagation

Pull Consumer 1

Pull Consumer 2

Pull Consumer m

17

parameters or return values. Event communication can take one of two forms, typed or

untyped.

(1) Untyped Event Communication. In untyped event

communication, an event is propagated by a series of generic push or pull operation calls.

The push operation takes a single parameter, which stores the event data. The event data

parameter is of type any, which allows any IDL defined data type to be passed between

suppliers and consumers. The pull operation has no parameters but transmits event data in

its return value, which is also of type any. Clearly, in both cases, the supplier and

consumer applications must agree on the contents of the any parameter and return value

if this data is to be useful.

(2) Typed Event Communication. In typed event

communication, a programmer defines application-specific IDL interfaces through which

events are propagated. Rather than using push and pull operations and transmitting data

using an any argument, a programmer defines an interface that suppliers and consumers

use for the purpose of event communication. The operation defined on the interface may

contain parameters defined in any suitable IDL data type. In the Push model, event

communication is initiated simply by invoking operations defined on this interface. The

Pull model is more complex because event communication is initiated by invoking

operations on an interface that is specially constructed from application-specific interface

that the programmer defines. Event communication is initiated by invoking operation on

the constructed interface. [Ref 8]

 4. CORBA Notification Service

CORBA Event Service falls short in several areas. There is no Quality of Service

(QoS) support that can be utilized to set the certitude of notification transmission. Many

times, event notifications need to be processed so consumers can meet requirements of

reliability, priority, ordering, and timeliness. Also, there is no capability to filter events so

a consumer will only get a subset of events. Moreover, existing Event Service

implementations are usually filled with proprietary mechanisms. Once a set of events is

18

implemented within a system, it becomes impossible to integrate those events with

another application that uses the same set of events but a different Event Service

implementation. In order to make this service more transferable, progress has been made

to achieve greater agreement on implementing some of these mechanisms that have

become proprietary. There have been efforts to enhance the functionality and interfaces

of the Event Service. The enhancements have resulted in a new CORBA service -- the

Notification Service.

a. Filter

One of the most promising additions to the Notification Service is

filtering. Filters allow consumers to subscribe to particular events by matching events to

be delivered to them against constraint expressions. This allows the Notification Service

to cut down on traffic and improve the scalability of CORBA event handling. Filters are

CORBA objects that enable interfaces to add, remove, and modify constraints that match

event message values. Constraints refer to variables that are bound to parts of the event

notification message and are specified using event types and/or expressions written in a

constraint language.

b. Quality of Service (QoS)

The Notification Service provides better support for QoS by defining

standard interfaces that allow control over the notification delivery's Quality of Service

characteristics. Name/value pairs are used to represent service characteristics at different

levels of the protocol stack. Each characteristic has some impact on notification delivery.

Therefore, at the channel, one may want to set a discard policy for determining which

notifications are thrown away as resource limits are breached. Or one may want to set a

maximum number of notifications that may be queued for a single consumer. At the

message level, one may want to set the reliability of event delivery. This could be a "best

effort" value, where no guarantees of delivery are made, or it could be set as "p ersistent,"

in which case the Notification Service stores the notification until the connection is re-

established. Some of the Quality of Service properties defined by the specification

include:

19

• Discard policy: Specifies policies for discarding events when the queues are

full.

• Earliest delivery time: Specifies how long an event is to be held in the

channel before it is delivered.

• Expiration time: Indicates the time range in which an event is valid. If an

event is not delivered within a specified time then an event channel should discard

it.

• Maximum events per consumer: Provides an upper bound to the number of

events the channel will queue on behalf of a given consumer. This QoS value

helps to relieve the pressure that can grow within a channel because of

misbehaving consumers that prevent some of the events from being consumed as

scheduled. A huge number of notifications that are constantly being saved and

queued for a single misbehaving consumer can use up a great deal of valuable

system resources that would otherwise be available for well-behaved consumers.

• Order policy: Specifies the order in which notifications are buffered for

delivery.

• Priority: Specifies the order in which events are delivered to consumers so

that more important events take precedence.

• Reliability: Is linked to both event reliability and connection reliability to

specify fault-tolerance properties. If these properties are in place, the Notification

Service will reconnect to all its clients and deliver all non-expired events to its

consumers after a crash.

c. Structured Events

With all this added information for each event, there is a need for a

general event structure, in which a wide variety of event data can be stored. The

structured event is a more strongly typed event message, known to the Notification

20

Service and its clients. This structure will allow more efficient processing of the event

notification.

Structured events consist of a header and a body. The header contains two

sections. The first has fixed information such as domain_name, type_name and event_name.

The second section, which is the variable portion of the header, contains optional

information about the event. This is constructed as a sequence of properties to hold QoS

information related to the individual event notification. The separation of the header into

two sections is designed so that a lightweight notification can be created.

The body of the structured event contains the actual event data, and is also

divided into two parts: the filterable data, and the remaining, or payload, data. The

filterable part is a sequence of properties. These properties contain the fields of the

notification on which consumers are most likely to base filter decisions. All other data is

contained in the remainder of the body. This data is of type CORBA any. Again, this

design was created to streamline throughput. There is no reason that an event could not

be filtered on data in the payload portion of the body, but performance would not be

optimal.

Also complete contents of the notification could be contained within the

optional header fields, leaving the body empty. This would allow a more streamlined

event. The structured event was organized to make filtering as simple and efficient as

possible while not forcing one to use it in a specific manner. [Ref 9]

5. Conclusion

The CORBA Event and Notification Services provide powerful capabilities to

handle events in a distributed, heterogeneous environment. However, CORBA only

specifies a set of conventions and protocols that must be followed by CORBA

implementations - it is left to developers to implement these specifications. Further, the

CORBA Event Model is an integrated part of CORBA, so that it is difficult to separate

the event model from CORBA and make it a generic tool for other projects that do not

use CORBA.

21

C. SAAM EVENT CHANNEL MODEL

The current SAAM channel model was designed by the SAAM research team,

headed by Dr. Geoffrey Xie, and implemented by NPS graduates Dean Vrable and John

Yarger in their thesis “The Server and Agent based Active network Management

(SAAM) Architecture: Enabling Integrated Service”. The channel model provides event

dispatching between SAAM components. It was designed to overcome some limitations

of the Java event model.

One of the limitations is the order of instantiation. In the Java event model, the

order of instantiation of objects is important. For instance, an event listener cannot

register with an event source that has not been instantiated.

Another limitation has to do with event source replacement. If one event source is

to take over notification of a certain type of event, listeners for that event must de-register

with the old source and then register with the new source. This process involves a great

deal of object passing and quickly becomes cumbersome.

1. SAAM Channel

A SAAM channel is a mechanism for delivering SAAM protocol events from one

or more event sources to one or more event listeners (Figure 2.8). Similar to the CORBA

event model, a SAAM channel decouples the sources and listeners of an event.

A SAAM channel is currently implemented as a Java class, and is thus allowed to

have attributes that constitute the state of the channel and methods that affect the state. A

channel contains a vector of listeners and a vector of talkers. Under this model, event

listeners become listeners to a channel. They register with a channel as they would

register with any event source. The key difference here is event sources now must

register as talkers on the channel. To send an event notification, a registered talker merely

calls the talk method of the desired channel. The channel then notifies all listeners on

that channel.

22

Figure 2.8 SAAM Channel Concept

In the channel registration process, the order in which objects register is not

important. Listeners are allowed to register with a channel that has no talkers and vice

versa. If a listener registers with a channel that has no talkers, the listener will not receive

any events on that channel until a talker registers with the channel, and then talks to it. If

a talker registers on a channel that has no listeners, the events sent by the talker will be

dropped. [Ref 3]

In the SAAM prototype, a set of well-known channels with unique and static

identification numbers is defined to provide the communication between SAAM

components. Each channel serves a particular set of SAAM components that perform a

well-defined task. For example, channel 80004 is used to pass SAAM control messages

to the PacketFactory component for processing. All components, which want to pass a

SAAM control message to PacketFactory, may at any time register with this channel as a

talker and pass their messages to the channel regardless of which instance of

PacketFactory is listening. Therefore, associating channels with well-defined tasks and

static identifiers facilitates loosely coupled communication between SAAM components.

Register/Deregister Channel

addListener (SaamListener listener)
addTalker (SaamT alker talker)

removeListener (SaamListener listener)
rertioveTalker (SaamTalker talker)

talk (SaamEvent se)

SaamTalkei
channel.talk (saamEvent)

SaaniTalkei
channel.talk (saamEvent)

SaaniTalker
channel.talk (saamEvent)

Event
Notification

SiuikEvoLt

Register/Deregister

SaamListener
receive (SaamEvent se)

SiüiEvaii

SaamListener
receive (SaamEvent se)

SaamListener
receive (SaamEvent se)

23

The existing SAAM channel model offers several benefits over the standard Java

Event Delegation model. However, there are some shortcomings in the current SAAM

channel design and implementation. These deficiencies will be discussed in the next

chapter.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

III. CHANNEL PERFORMANCE METRICS AND EVALUATION
OF EXISTING SAAM CHANNEL MODEL

To motivate the new channel design, a set of performance metrics and qualitative

objectives that help to characterize a channel model and implementation are defined in

this chapter. The performance of the current SAAM channel model have been measured

and qualified according to the defined metrics. The results are reported in this chapter.

They raised several performance issues that have guided the design and implementation

phase of the new channel model.

A. CHANNEL PERFORMANCE METRICS AND QUALITATIVE
OBJECTITIVES

In this section, several channel performance metrics used in this thesis will be

defined and explained.

1. Channel Throughput (R)

A channel’s main task is to deliver events generated by registered senders

(channel talkers) to registered receivers (channel listeners). The performance of this task

can be measured by channel throughput, defined as the number of events delivered per

second. An effective and efficient delivery mechanism is required to maximize the

throughput.

The channel event delivery period is the time necessary for the channel to deliver

an event to all registered channel listeners. It may vary from event to event. Also, when a

listener uses a separate thread for event handling, delivery of an event to that listener

means just passing the event to the listener object. It does not involve in the actual

handling of the event. Therefore, channel throughput does not always measure how fast

listeners process events. The maximum channel throughput is directly related to the event

delivery time. The following explicitly defines the relationship between the maximum

channel throughput and the minimum event delivery time:

26

 Rmax: Maximum Channel Throughput

 Td: Minimum Channel Event Delivery Time

dT
R 1

max =

2. Channel Work Rate (W)

Channel Work Rate is defined as the total number of events processed by the

channel’s listeners per second. Similar to the channel throughput, it is possible to

improve channel work rate by using efficient event dispatching techniques. The key is to

maximize the degree of parallelism in the handling of events by different listeners.

3. Channel Access Delay (D)

Channel Access Delay is defined as the latency between a channel talker’s talk

request and its actual access to the channel. A channel can only process one talk request

at a time. It is assumed that a talk request will be blocked and put into a waiting queue if

the channel is busy processing another talk request. The channel will serve talk requests

in the queue following a specific algorithm (e.g., FIFO). The total waiting time a talk

request spends in the queue is defined as the Channel Access Delay of that Talk Request.

The average channel access delay of events from a talker is defined as the Channel

Access Delay of That Talker. These delays are directly related to the total number of

registered talkers and the talk frequency and period of each talker.

4. Event Talk Time (Tt)

Event Talk Time is the amount of time the channel spends in processing a talk

request. This metric is important for event talkers as well as the channel itself. Excessive

event talk time may decrease the performance of the talkers and the channel dramatically.

This is because all talker threads will be blocked during each event talk period.

From the perspective of channel, access delay will increase and channel

throughput will decrease as a result of long event talk time.

27

5. Thread Count (C)

Multi-threading a channel object may increase the performance of the channel

with respect to the metrics defined above. However, it is not always a good idea to add

more threads to the design of a channel. As systems differ with respect to the number of

threads supported, for a channel design to be general purpose, it is important to make the

channel scalable in terms of the thread count. Also, a large number of threads may incur a

significant amount of resource overhead. Each Thread object consumes memory. In

addition, each thread has two execution call stacks allocated for it by the Java Virtual

Machine. One stack is used to manage Java method calls and local variables, while the

other stack is used to keep track of native code.

A thread also consumes processor resources. There is inherent overhead in the

scheduling of threads by the operating system. It happens when one thread’s execution is

suspended, its state stored, and another thread is given access to the processor so its

execution may be resumed. This event is called a context switch. CPU cycles are required

to do the task of context switching and can become significant if numerous threads are

running. [Ref 10]

Another important issue, which should be considered when using threads, is

synchronization of thread executions. The consequences of failing to properly

synchronize threads which access shared resources are severe: data corruption and race

conditions. These can cause programs to crash, produce incorrect results, or behave

unpredictably. Even worse, these conditions are likely to occur only rarely and

sporadically, making the problem hard to detect and reproduce. If the test environment

differs substantially from the production environment, either in configuration or in load,

these problems may not occur at all in the test environment, leading to the erroneous

conclusion that the tested programs are free of major failures, when in fact the conditions

triggering the failures simply have not yet been encountered.

Improper or excessive synchronization of threads can lead to other problems, such

as poor performance and deadlock. While poor performance is certainly a less severe

problem than data corruption, it can still be a serious problem. Writing good

multithreaded programs requires walking a fine line, synchronizing enough to protect the

28

data from corruption, but not so much as to risk deadlock or impair program performance

unnecessarily.

Synchronization comes at a cost, also. A synchronized block in the Java language

is generally more expensive, in terms of execution time, than the critical section facilities

offered by many platforms, which are usually implemented with an atomic "test and set

bit" machine instruction. Even when a program contains only a single thread running on a

single processor, a synchronized method call is still slower than an unsynchronized

method call. If the synchronization actually requires contending for the lock, the

performance penalty is substantially greater, as there will be several thread switches and

system calls required. [Ref 11]

When adding additional threads to the design of the channel, the issues and costs

must be considered carefully. At a minimum, synchronization of built- in channel threads

should be transparent to a developer who uses the channel objects, and the developer

should not be asked to synchronize an application specific (talker or listener) thread with

a built- in channel thread in the code.

6. Adaptability of Channel

Adaptability measures the ease with which a channel model and implementation

can be adapted to other projects and applications. A channel design with high adaptability

meets software reusability and extendibility goals.

Reusability is the ability of software products to be reused, in whole or in part, for

new applications. On the other hand, extendibility is the ease with which software

products may be adapted to changes to the specification. [Ref 12]

An easily adaptable channel must be reusable for other projects and must be

extendible according to the needs of developers and the requirements of applications.

7. Scalability of Channel

When the number of talkers and listeners registered with the channel grows or the

individual load of channel participants increases, the channel should be able tolerate the

29

changes. The channel should be able to be configured by developers to solve scalability

problems.

When applications and the number of necessary channels grow, another

scalability issue arises. Developers should be able to add new channels to their

application without unduly impacting performance and manageability.

8. Manageability of Channel

For small projects, the number of channels required will also be small and the

manageability of the channels will not be a big concern.

 On the other hand, large applications will require a relatively large number of

channels and developers will have to spend a substantial amount of effort to manage

these channels. Channels should be designed to minimize this effort.

 Each channel object must have unique properties that differ from other channel

objects. These properties will help developers to reach, retrieve, and trace the required

channel objects in their code.

9. Functional Flexibility

The major goal of a channel is to deliver events generated by talkers to registered

listeners in a fast, reliable manner.

However, a channel should be flexible enough to dynamically change the

behavior of the event delivery mechanism. For example, event delivery order and service

priorities of channel participants (channel talkers and listeners) can be configured or

tuned in accordance with the needs of participant objects.

10. Ease of Use

A channel should provide an easily usable application-programming interface

(API) for developers. The following discussions assume a nominal Java channel class

that embodies this API.

30

a. Easy Creation of Channel

Developers should be able to create a channel with default properties by

using the default constructor of Channel. The Channel class should provide overloaded

constructors to create new channel objects with different attributes.

b. Meaningful Method Names

Choosing meaningful method names makes programs readable and helps

avoid excessive use of comments. It also helps developers to explore the channel

functionality readily. Method names must be related to tasks fulfilled by the methods.

c. Easy Configuration of Channel

The Channel class must provide class methods, which enable the

channel to be configured or tuned to improve its performance and functionality.

d. Sufficient and Understandable Method Overriding

Method overriding eases the developers’ task when programming with the

Channel class. The print method of the Java PrintStream class is a good example for

this metric.

e. Conflicts Between Methods

Semantics and functionality of the methods in the Channel class must be

as clear as possible. Interactions between the methods must be well defined and well

documented.

f. Conflicts Between Parameters in a Method

Method parameter names must be descriptive and must identify the objects

expected. The name of a method and the type and order of its parameters generate the

method signature. Method signatures must be designed to avoid confusion.

31

g. Documentation

The Channel class should be well documented so that developers can

study, use, and modify it easily.

B. TEST OF SAAM CHANNEL

The existing SAAM channel was tested with respect to the defined performance

metrics and qualitative objectives. In this section, the test results are reported.

1. Channel Throughput and Work Rate

Throughput and work rate of the existing SAAM channel was measured with

different event handling periods for listeners. In the test scenario, three talkers and three

listeners were registered with a SAAM channel (Figure 3.1). All channel talkers

generated events based on Poisson distribution and the average event generation rate was

200 events per second. The event handling time of Listener 1 and Listener 2 was set to

0.5 milliseconds per event achieved by an idle for-loop in the listeners’ receiveEvent

methods. On the other hand, the event handling time of Listener 3 was increased

gradually by forcing the execution thread to sleep for an increasing amount of time in the

listener’s receiveEvent method.

Figure 3.1 Test Bed For Studying Impact of Listener Event Handling Time on
Channel Throughput

As shown in Figure 3.2, the channel throughput and work rate decreased severely

when the event handling time of Listener 3 was increased. These results show that the

throughput and work rate of the existing SAAM channel is dependent on the total event

delivery time, which depends on the number of registered channel listeners and the sum

of their event handling times.

SAAM
CHANNEL

Talker 2

Listener 1

Listener 2

Listener 3 Talker 3

Talker 1

32

Event filtering can be used to multicast the events to interested listeners instead of

broadcasting to all listeners. On the other hand, new threads can be created by the

channel and dedicated to serve listeners that have a long event-handling time. Event

filtering and dedicated event handling threads help reduce the total event delivery time

and allow an event to be handled concurrently by different listeners. As a result, the

channel throughput and work rate increases. The existing SAAM channel offers none of

these capabilities and thus its throughput is not optimized.

0

300

600

900

1200

1500

1 3 5 7 9 11 13 15 17

Listener 3 Event Handling Time (milliseconds)

E
ve

nt
s

pe
r

se
co

nd

 Throughput (R) Work Rate (W)

Figure 3.2 SAAM Channel Throughput and Work Rate versus Listener Event
Handling Time

2. Channel Access Delay

Access delay of the existing SAAM channel was measured using a varying

number of registered talkers and different event handling times for listeners. To measure

the effect of the number of talkers on the channel access delay, three listeners with one

millisecond event handling time (simulated by an idle for-loop in their receiveEvent

method) were registered with the channel and the number of talkers was initially set to

one and then increased steadily. Each talker generated 500 events per second, following a

Poisson distribution. Figure 3.3 shows the test bed for the measurement.

33

Figure 3.3 Test Bed for Measuring SAAM Channel Access Delay

The channel access delay for the case of a single talker was very small. This was

an expected result because the channel was available to serve this talker all the time. The

average channel access delay of talkers grew linearly when new talkers were added to

channel. (Figure 3.4)

0.5
48

93
140

193

0
50

100
150

200
250

1 2 3 4 5 6

Number of Talkers

D
 (

m
ill

is
ec

on
d)

Figure 3.4 Average Access Delay versus Number of Channel Talkers

In the second scenario, the event handling time of Listener 3 was increased

gradually to see the effects of event handling time on the channel access delay. The rise

in the total event delivery time caused the channel access delay to increase. (Figure 3.5)

SAAM
Channel

Talker 2

Listener 1

Listener 2

Listener 3

Talker n

Talker 1

34

18

30
36

48

58
67

76

87
95

0
10
20
30
40
50
60
70
80
90

10
0

0 15 30 45 60 75 90 105 120 135

Listener 3 Event Handling Time (millisecond)

D
 (

m
ill

is
ec

on
d)

Figure 3.5 SAAM Channel Access Delay versus Event Handling Time

Therefore, the talker count and total event delivery time have a significant impact

on the channel access delay of the existing SAAM channel. Specifically, the event

handling times of channel listeners affect the channel access delay directly. This is

because the existing SAAM channel has no buffering capability and it cannot accept

another event until the current one is delivered to all listeners. This means that a channel

is not accessible by talkers while it is dispatching an event. Consequently, the

performance of the channel talkers is poor and unpredictable due to high and variable

channel access delays.

3. Event Talk Time

As identified earlier, the existing SAAM channel has no event buffering

capability and talkers cannot continue their job by sending their events to the channel.

Talkers have to wait until the current event is delivered to all listeners. Actually, it is the

thread of the current talker that executes channel dispatching and event handling code,

except for those listeners, which are separately threaded.

The Event Talk Time of the SAAM channel includes the channel access delay and

total event delivery time. Therefore, it should vary according to the number of talkers and

35

the event handling times of its listeners. A simple experiment was performed to verify

this fact. The test bed depicted in Figure 3.3 was again used. Event Talk Time data was

collected for an increasing number of talkers.

Figure 3.6 shows the results. Clearly, there is a linear rise in the event talk time

when new talkers are added to the channel.

43

87

131

173

218

260

0

50

100

150

200

250

300

1 2 3 4 5 6 7

Number of Talkers

Tt
 (m

ill
is

ec
on

d)

Figure 3.6 Event Talk Time Versus The Number of Talkers

More measurements of event talk time were collected using different event

handling times. In this scenario, three talkers and one listener were registered with the

SAAM channel. The event generation rates of the talkers and the event handling scheme

of the listener are the same as the scenario used to study the channel access delay.

Figure 3.7 Test Bed for Measuring SAAM Channel Event Talk Time

SAAM
Channel

Talker 2 Listener

Talker 3

Talker 1

36

The listener’s handling time was increased steadily and the resulting event talk

times recorded. Figure 3.8 shows the experiment results. It can be concluded that with the

current SAAM channel design, event handling times affect event talk times directly.

0

14

29

46
58

73

88

103

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

Average Listener Event Handling Time (millisecond)

Tt
 (

m
ill

is
ec

on
d)

Figure 3.8 Event Talk Time Versus Event Handling Time

4. Thread Count

The existing SAAM channel does not require any thread to fulfill its functionality.

This reduces its complexity. But, due to this threadless design, it cannot buffer events

resulting in high and variable channel access delays and event talk times. The design may

also cause some scalability problems, which will be discussed at the next section.

5. Manageability and Scalability of SAAM Channel

SAAM channels can be accessed by their channel identification numbers. An

object wishing to manage these channels must create its own data structure, in order to

keep records about existing channels and control the communication between them. In

SAAM, the ControlExecutive class acts as a channel manager. SAAM talkers and

listeners cannot register with or talk to channels directly. They interact with channels via

ControlExecutive. ControlExecutive is implemented in an ad hoc manner. As a

37

result, the current SAAM channel design does not provide much support for channel

management.

Scalability is one of the most critical drawbacks of the existing SAAM channel

design. Adding new talkers and listeners to a channel increases the channel access delay

and event talk time. The channel cannot compensate for these effects without

performance penalties.

In addition, interaction between multiple SAAM channels should be considered

carefully when the number of channels grows in an application. Consider the scenario

depicted in Figure 3.9.

Figure 3.9 Event Concatenation in SAAM Channels

Object_1 sends an event to SAAM Channel_1. Object_4 talks to SAAM

Channel_2 when it gets that event from Channel_1. Object_7 talks to SAAM Channel_3

when it gets the same event from Channel_2. This concatenation of channels blocks the

thread of Object_1 until all three SAAM channels deliver the event to their listeners. At

the same time, all SAAM channels in this scenario are inaccessible by other talkers until

completion of Object_1’s event delivery.

Another scalability issue is that the existing SAAM channel provides one-way

communication. At least two channels are required to create a duplex communication

between two objects. (Figure 3.10)

SAAM
Channel 3

SAAM
Channel 2

Object
1

SAAM
Channel 1

Object
7

Object
6

Object
5

Object
4

Object
3

Object
9

Object
2

Object
8

Talker Thread

38

Figure 3.10 Two-way communication with SAAM channel

6. Adaptability and Functional Flexibility of SAAM Channel

The existing SAAM channel has been designed for communication between

components of the SAAM prototype. Thus, it can handle only SAAMEvents. It is difficult

to adapt the current SAAM channel model and implementation to other projects because

it has been intended to meet the requirements of the SAAM prototype. It does not adapt

to the varying needs of different applications.

Event dispatching of the existing SAAM channel is inflexible and cannot be

changed. Events cannot be delivered to listeners in a specific order according to

application needs. Listeners are served in their registration order and it is not possible to

give precedence to listeners that have specific requirements for event handling.

In addition, the existing SAAM channels broadcast the current event to all

registered listeners without regard to specific interests of the listeners. This increases the

channel traffic unnecessarily and forces channel listeners to filter and drop uninterested

events themselves.

7. Ease of Use of SAAM Channel

An instance of the SAAM channel can be created by providing an integer channel

identification number and a channel participant, either a listener or talker. Later, other

listeners and talkers can be added to the channel by using the addListener and addTalker

methods. An additional constructor, which allows creation of a SAAM channel without

any participant, would enhance the usability of the channel design.

SAAM
Channel

Object 1 Object 2

SAAM
Channel

39

IV. NEW CHANNEL MODEL AND CHANNEL PACKAGE

A. INTRODUCTION

The existing SAAM channel model offers several benefits over the standard Java

Event Delegation model by allowing event delivery from one or more event sources to

one or more event listeners and allowing event listeners to register with a channel that has

no talkers.

However, there are some shortcomings in the current SAAM channel design and

implementation. The model supports just one type of event class. It has no buffering

capability. The thread of an event talker is blocked unnecessarily until the event is

delivered to all listeners. The model does not give a programmer a choice of dispatching

events to multiple listeners in a specific order. Consequently, the performance of the

SAAM event model is not optimized.

As the main contribution of this thesis, a new channel model was designed to

mitigate the shortcomings in the current SAAM channel implementation. The resulting

channel package provides Java developers a generic, highly adaptable, and flexible

communication mechanism between loosely coupled components.

B. FEATURES OF NEW CHANNEL DESIGN

The key features of the new channel design are summarized below. The

implementation details of these features will be described in the next section where the

Java channel package is introduced.

1. Generic Event Structure

The new channel supports multiple types of event objects per channel. Further, it

uses a simple and extendible event structure.

40

2. Event Buffering

The new channel is capable of buffering events. This allows a channel to dispatch

events to multiple listeners in a specific order and reduces the channel access delay and

event talk time significantly.

3. Event and Channel Participant Priority

In the new channel design, a priority value is assigned to each event and each

channel participant (channel talker and channel listener). Therefore, it is possible to give

precedence to important events or serve particular listeners or talkers first.

4. Event Delivery Order

The new channel allows developers to choose different event dispatching

schedules based on the priorities of events and channel participants. The dispatching can

be customized based on application needs.

5. Event Filtering

The new channel design provides an event filtering mechanism, which allows

channel listeners to subscribe to particular events. A channel will deliver to a listener

only those events for which the listener is subscribed.

6. Self-Dispatching

The new channel design offers a self-dispatching mechanism for creating separate

threads for channel listeners with large event handling times. This mechanism can be

used to mitigate the negative effect on channel performance of long event handling times

for specific listeners.

7. Duplex Communication

The new channel design supports two-way event communication between objects

through a single channel. In other words, an object can be both a channel talker and a

channel listener on the same channel, but for explicitly different events.

41

8. Concatenating Channels

The new channel design allows concatenation of channels. While a channel

cannot generate events, it may be forwarded events from another channel. In this sense, a

channel can be a listener on another channel.

C. CHANNEL PACKAGE

The new channel design was implemented in Java and all classes and interfaces

were gathered under a Java utility package, called channel.

Ø Classes

• Channel.java

• ChannelEvent.java

• ChannelListenerItem.java

• ChannelEventFilter.java

• FIFOScheduler.java

• PerTalker_RR_Scheduler.java

• PriorityScheduler.java

• ChannelManager.java

Ø Interfaces

• ChannelListener.java

• ChannelFilter.java

• ChannelScheduler.java

• ChannelAccessAuthority.java

1. ChannelEvent Class

ChannelEvent class provides a data structure to encapsulate channel events.

Talker and event data members of this class are instances of the java.lang.Object

class, which is the base class of all Java objects. As such, it is the primitive class from

42

which all other classes are ultimately derived. Therefore, ChannelEvent class can

encapsulate all objects as either an event or an event talker.

References to an event and its talker are required to create an instance of

ChannelEvent. The value of the priority, for both the event and the talker, is an integer.

If no value is provided, then a default value of zero is assigned. A higher integer value

implies higher priority.

Another data member of ChannelEvent class is the timestamp. It is generated

automatically, using the system’s time in milliseconds.

Figure 4.1 Channel Event Structure

2. ChannelListener Interface

 All channel listeners must implement the ChannelListener interface to

register with a channel and obtain events from that channel. ChannelListener contains

a single method:

• public void recieveEvent (ChannelEvent event)

This method is called by the channel to deliver an event to the registered channel

listeners. This method should be synchronized to guarantee that no more than one

channel dispatcher thread is allowed when a channel listener registers with multiple

long timestamp

int eventPriority

int talkerPriority

Object event

Object talker

43

channels. The reason for this is that each channel creates its own event dispatcher thread

and synchronization is critical to prevent the occurrence of hazards described earlier.

3. ChannelFilter Interface

Event filtering can be used by a channel to multicast its events to interested

listeners instead of broadcasting to all listeners. Multicasting reduces the total delivery

time for an event. Since the throughput is the reciprocal of the average event delivery

time, the channel throughput will increase.

Without event filtering, channel listeners have to check all incoming events and

choose the pertinent ones themselves. It can be guaranteed that channel listeners get only

the events in which they are interested when event filtering is employed.

The ChannelFilter interface defines one simple method that must be

implemented.

• public boolean isAccepted (ChannelEvent event)

 Basically, if this method returns a value of true then this event passes the filter.

Channel listeners can implement ChannelFilter themselves or use another object that

implements this interface to take advantage of event filtering. Channel listeners can pass

their filters to a channel when they register with the channel or later when filtering is

needed.

Another benefit of event filtering is that channel listeners can control event flow

between the channel and themselves dynamically. A listener can suspend or stop event

acceptance from a channel without deregistering with channel. It is also possible to

change the range and characteristics of accepted events to adapt to changes in system

conditions and requirements.

The new channel design also allows concatenating event filters. A channel

maintains the list of filters for a listener in a vector. New filters can be added to the end of

the vector upon requests from the listener. The channel dispatches an event to that

44

listener only if this event is acceptable by all of the filters in the vector. Channel listeners

can add a new filter or remove an existing filter by using the addFilter and removeFilter

methods of Channel.

The channel package contains a built- in, ready-to-use, class named

ChannelEventFilter, which implements the ChannelFilter interface and provides

a filtering capability based on the class types of either the talker or the event, or simply

the talker’s name. ChannelEventFilter will be described in detail in Section 6 of this

chapter.

4. ChannelScheduler Interface

A customizable channel scheduler allows a channel to buffer and dispatch events

to multiple listeners in a specific order. A channel event can be categorized by either its

talker, the event’s type, or the respective priority of either the talker or the event itself.

This categorization is used by the scheduler to determine the event delivery order.

The channel scheduler buffers and orders channel events according to its

scheduling policy. The channel dispatches events to listeners by pulling them from the

scheduler. The channel scheduler was implemented as an interface. The channel package

includes three built- in channel schedulers; FIFO Scheduler, Per Talker Round-Robin

Scheduler, and Priority Scheduler, all of which implement the ChannelScheduler

interface. Developers may also implement and deploy their own schedulers to meet their

specific requirements. This provides functional flexibility for the channel. The

ChannelScheduler interface contains two methods:

• public void push (ChannelEvent event)

• public ChannelEvent pull ()

A channel forwards events to a scheduler by calling its push method and

dispatches events by extracting them from the scheduler via the pull method.

45

 Figure 4.2 Channel Scheduler

5. ChannelListenerItem Class

ChannelListenerItem is the data structure that a channel uses to manage

channel listeners. As depicted in Figure 4.3, each ChannelListenerItem object

encapsulates a ChannelListener object, its filters, and its priority.

Figure 4.3 Channel Listener Item

The object also hosts an event buffer. The queue is used when a channel creates a

dedicated thread for dispatching events for this listener. Without the option of having a

separate dispatching thread, a listener with a long event handling time would delay the

channel dispatcher thread and the other channel listeners unnecessarily. This self-

Ordered Event
Buffer

Scheduler Policy
Push event

Pull event

FIFOQueue listenerQueue

int listenerPriority

Vector listenerFilters

ChannelListener
listener

46

dispatching mechanism is implemented to eliminate a channel’s dependence on the event

handling periods of listeners.

After having registered with a channel, a listener may make a self-dispatch

request by calling the startListenerSelfDispatch method of that channel. The channel

relays this request to the channel listener item that it has created for the listener. The

channel listener item allocates an event buffer and creates a thread for dispatching events

from this event buffer to the listener. When the thread and the event buffer are ready, the

self-dispatching flag of the channel listener is set to true. After it is set to true, the

channel does not directly call the receiveEvent method of the listener for event delivery.

Instead, the channel puts events into the event buffer of the corresponding listener item. If

a channel listener has a variable event handling time in specific situations, self-

dispatching can be suspended and resumed temporarily or can be stopped permanently.

Figure 4.4 Self-dispatching

6. ChannelEventFilter Class

The channel package includes a built- in event filter class,

ChannelEventFilter, which implements the ChannelFilter interface. Using this

built- in filter, events may be filtered based on class types or talker name.

receiveEvent (event){
handle event

}

receiveEvent (event){
handle event

}

receiveEvent (event){
handle event

}
 CHANNEL

Event

Dispatcher Thread

Event Buffer

Self-dispatching Thread

47

ChannelEventFilter class denies all events initially. In order for an event to be

accepted, that is, to be passed by the filter, properties, which allow its acceptance, must

be set by the listener. ChannelEventFilter provides four methods to set acceptance

criteria:

• addAcceptedTalkerName (String talkerName)

• addAcceptedTalkerClass (Class talkerType)

• addAcceptedEventClass (Class eventType)

• addAcceptedTalkerEventPair (Class talkerType,

 Class eventType)

The first method requires the name of the event talker as a parameter. The name

of the talker is obtained by calling the toString method of the talker objects. All events

whose talker names match this particular name will be accepted by the filter. The second

and third methods are used to specify acceptable event class types and talker class types.

The last method provides a more sophisticated filtering capability. A developer may

specify acceptable events by their class types and their talker class types at the same time.

The following methods are used to remove the accepted event properties, which were

added previously.

• removeAcceptedTalkerName (String talkerName)

• removeAcceptedTalkerClass (Class talkerType)

• removeAcceptedEventClass (Class eventType)

• removeAcceptedTalkerEventPair (Class talkerType,

 Class eventType)

48

Figure 4.5 ChannelEventFilter Filtering Process

Figure 4.5 shows the filtering process for ChannelEventFilter class. There

are also two useful methods: one to stop a filter from accepting events temporarily and

the other to resume normal operation.

• suspendAccepting ()

• resumeAccepting ()

These methods do not change the event permission settings of the filter. All

events are denied regardless of the filter settings when the suspendAccepting method is

called. On the other hand, the resumeAccepting method returns the filter to its normal

operation and events are accepted according to the existing filter settings.

No

No

No

No

Yes

Yes Yes

Yes

Is talker class type of
the event acceptable?

Is talker and event class
type acceptable?

Is class type of the
event acceptable?

Is talker name of the
event acceptable?

Accept Event

Event

Deny Event

49

7. Schedulers

As previously stated, the channel package contains three different built- in

schedulers that implement ChannelScheduler interface: FIFO Scheduler, Per Talker

Round-Robin Scheduler, and Priority Scheduler.

a. FIFOScheduler Class

The FIFOScheduler class simply buffers arriving events into a First In

First Out (FIFO) queue. Events are served by their arriving orders, regardless of talker

and event priorities. FIFOScheduler is the default scheduler for channels and will be

installed when no scheduler is specified at the time of channel creation.

b. PerTalker_RR_Scheduler Class

The Per Talker Round-Robin Scheduler offers a fair service distribution

between channel talkers. However, a priority queue is created for each talker. Arriving

events are dispersed to separate queues based on their talker identity. The pull method

extracts events from talker queues using a round-robin algorithm.

Figure 4.6 Per Talker Round-Robin Scheduler

c. PriorityScheduler Class

Events are buffered in a priority queue in accordance with their talker and

event priorities. Events with the highest talker priority will be served first. If the talker

priorities of two events are equal, then their event priorities are compared, and the one

Talker A Queue

Talker B Queue

Talker C Queue

Switch
by
event
talker

Round
Robin

Push event
Pull event

50

with a higher priority will be served first. When both the event and talker priorities are

equal, the first arriving event will be served first. This scheduler can be used to give event

delivery precedence to particular event and talker types.

8. Channel Class

The Channel class is the core class that provides an event delivery service

between channel talkers and channel listeners. Its main tasks include scheduling, filtering,

and dispatching of events. Developers may customize how these tasks will be carried out

for individual channels according to their application requirements.

a. Creating a Channel Object

There are two constructors to create an instance of Channel class:

• public Channel (int channel_id)

• public Channel (int channel_id,

 ChannelScheduler scheduler)

The first one constructs a channel with a specified integer channel

identification number. This constructor creates a channel with the default built- in FIFO

scheduler. The second constructor can be used to create a channel with a specific

scheduler. This scheduler can be chosen from one of the built- in schedulers or developed

to meet particular requirements of the current application.

b. Adding and Removing Listeners to Channel

All objects that want to register with a channel as a listener must

implement the ChannelListener interface. New listeners are added to a channel by

invoking the channel’s addListener method. This method is overloaded to allow the

priority and filter objects of the listener to be specified as options.

51

• addListener (ChannelListener listener)

• addListener (ChannelListener listener,

 int priority)

• addListener (ChannelListener listener,

 ChannelFilter filter)

• addListener (ChannelListener listener,

 ChannelFilter filter, int priority)

Existing registered listeners are removed from a channel by calling the

following method:

• removeListener (ChannelListener listener)

c. Adding and Removing Talkers to Channel

Any object may register as a talker of a channel simply by invoking one of

the channel’s addTalker methods.

• addTalker (Object talker)

• addTalker (Object talker, int talkerPriority)

Talkers can be easily removed from a channel by using the following

method:

• removeTalker (Object talker)

52

d. Talking on Channel

After registration with a channel, a talker calls one of the talk methods of

the channel to send an event to the channel.

• public void talk (Object talker, Object event)

• public void talk (Object talker, Object event,

 int eventPriority)

• public void talk (ChannelEvent event)

The first talk method is the most generic and the talker can use it to send

any Java object to the channel as an event without restriction. The second would be used

when the talker wants to assign a particular priority to the event. The third talk method

makes it possible to deliver an instance of ChannelEvent directly to the channel. In the

first two talk methods, the channel encapsulates the event object, the talker object, and

the event priority (the default event priority is used if it was not specified) in a new

ChannelEvent, while the third method requires a ChannelEvent as an input

parameter. Each method pushes a ChannelEvent to the channel scheduler.

e. Event Dispatching

A dispatcher thread is created for a Channel object to pull events out of

the channel scheduler and deliver them to each registered channel listener. Listeners are

served in the order of their priorities. If two listeners have the same priority, the one that

registered first will be served first (FIFO within priorities). The dispatcher thread

continues to dispatch events continuously until the scheduler’s event buffer is empty.

Whenever the event buffer becomes empty, the dispatcher thread goes to sleep. It will be

awakened upon arrival of a new event to the scheduler.

53

Figure 4.7 Channel Event Dispatching

f. Event Filtering

In the new channel design, a listener of a channel does not have to receive

and handle all events that go through the channel. It can use event filters to identify

specific types of events that it intends to receive. If one or more event filters are installed

for a listener, the channel dispatcher always checks whether the current event is

acceptable by those filters before delivering the event to the listener. If the event is not

acceptable, the dispatcher will not deliver it to the listener. A listener is not required to

specify a filter. Unless a listener specifies a filter, it will receive every event that goes

through the channel. The use of a built- in filter with no specified acceptance criteria, as

noted above, will prevent all events from being send to the listener. Figure 4.8 shows the

event filtering process of a channel, which is repeated for every listener on a per event

basis.

LISTENERS DISPATCHER THREAD SCHEDULER

Ordered
Event
Buffer

Scheduler Policy
Push
event

Pull
Event

54

Figure 4.8 Channel Event Filtering Process

g. Listener Self-Dispatching

The ChannelListenerItem class supports self-dispatching, as discussed

earlier. The Channel class provides the necessary API, i.e., public methods, to turn on and

off self-dispatching for a listener. These methods are:

• startListenerSelfDispatch (ChannelListener listener)

• suspendListenerSelfDispatch (ChannelListener listener)

• resumeListenerSelfDispatch (ChannelListener listener)

• stopListenerSelfDispatch (ChannelListener listener)

 A channel can start or resume self-dispatching for a listener without

delay. However, suspending or stopping self-dispatching requires coordination between

the channel dispatcher thread and the self-dispatching thread. The channel waits until the

event buffer of the self-dispatching listener is empty to carry out a suspending or stopping

request.

Does this
listener have
filter?

Event

Dispatch event to
listener.

NO

YES

Do Not
Dispatch

NO

YES

Do all filters accept
 event?

55

h. Duplex Communication

The new channel design supports two-way event communication between

objects. In other words, an object can be a channe l talker and channel listener on the same

channel, but cannot receive its own events. Figure 4.9 illustrates the two-way

communication between Object A and Object B.

Figure 4.9 Two-way Event Communication

i. Concatenating Channels

The Channel class, itself, also implements the ChannelListener

interface so that a channel can be a listener of another channel. This provides support for

concatenating channels as shown in Figure 4.10. Only talkers can initiate events. A

channel simply forwards events, submitted by a talker, to another channel as necessary,

treating that receiving channel as a listener. The receiving channel must register as a

listener using the source channel’s addListener method.

Figure 4.10 Concatenating Channels

Object A as a
channel talker
& listener

CHANNEL

CHANNEL

CHANNEL

Talker A

Talker B

Listener D

Listener C

Listener B

Listener A

Talker C

Object B as a
channel talker
& listener

56

9. ChannelAccessAuthority Interface

This interface provides a framework to control and organize all channels, and

each channel’s participants, of an application in a centralized manner. It defines five

methods to be implemented by such a centralized channel cont roller.

• boolean isTalkerAuthorized (Object talker,

 int channel_id)

• boolean isListenerAuthorized (ChannelListener listener

 int channel_id)

• int getTalkerPriority (String talkerName)

• int getListenerPriority (String listenerName)

• ChannelScheduler getSchedulerForChannel (int ch_Id)

The first and second methods allow a channel controller component to specify

permissions for talking and listening on all the channels. The controller may stipulate

talker and listener priorities, the values of which may be retrieved via the third and fourth

methods. The last method ensures that the proper channel scheduler is installed for a new

channel. In this way, the channel authority can determine the event dispatching order for

the channel in accordance with the requirements of the application and channel

participants.

10. ChannelManager Class

The SAAM channel model completely decouples event sources (channel talkers)

and event listeners (channel listeners). This decoupling raises an interesting question:

“How can channel participants obtain a reference to the channel with which they want to

interact?” This is not a big concern for small applications. Channel references can be

passed to a participant object when the objects is created, or set later by calling the

appropriate method of the channel participant of interest.

57

When the number of channels is large, it is necessary to create a common, easy-

to-use, interface for use by all channel participants instead of passing channel references

to participants individually. Channel talkers and listeners interact with this common

interface to access their channels.

The ChannelManager class was developed to provide a common interface for

channel participants in large applications. Basically, this class manages channels by

keeping a table of existing channels, creating new channels when required, and

overriding the Channel class methods with an extra argument to allow the desired

channel to be identified simply by its channel_id. A ChannelManager can only

control object access to channels if it contains a reference to a

ChannelAccessAuthority object. A ChannelManager can only obtain this

reference during instantiation and through the control object control access to channels

and enforce predefined priorities for channel talkers and listeners. Thus two constructors

are necessary:

• public ChannelManager ()

• public ChannelManager (ChannelAccessAuthority authority)

 The first method constructs a channel manager without any access control

authority while the second method creates one with an access control authority.

When an object wants to register with a channel it sends a request to the channel

manager with the channel identification number included. If the channel manager

contains no reference to a channel access control authority object, it proceeds to check

whether a channel object with the given ID exists. If no such channel exists, the manager

creates a new channel object with the specified channel ID and adds its information to the

channel table. Once the target channel object is located, or created if necessary, the

channel manager calls one of the channel’s addTalker or addListener methods to

complete the object registration.

58

However, if the channel manager contains a reference to a channel access control

authority object, it first verifies that the requesting object is authorized access to the

requested channel. This is accomplished by calling the control object’s

isTalkerAuthorized or isListenerAuthorized method. If the access is authorized, the

channel manager will perform the same registration steps as described in the paragraph

above. Otherwise, it will reject the request. Also, the channel manager will use the

control object’s getTalkerPriority or getListenerPriority method to set the priority of an

authorized talker or listener. The required argument talkerName or listenerName is

obtained by calling the requesting object’s toString method. Finally, when creating a

channel object, the channel manager will call the access control object’s

getSchedulerForChannel method to determine the appropriate channel scheduler for the

new channel.

59

V. TEST AND RESULTS

Simple example applications have been built with the Java channel package. The

performance of the new channel design was evaluated through experiments using these

applications. The results are presented in this chapter. To demonstrate the suitability of

the new channel design for large application development, the SAAM prototype has been

updated to use the new channel package. The steps of this update are also described in

this chapter.

A. EVALUATION OF NEW CHANNEL DESIGN

1. Channel Throughput and Work Rate

The new channel design supports event filtering and self-dispatching for channel

listeners. When activated, both of these mechanisms may reduce the total delivery time

for an event and allow events to be handled concurrently. As a result, the channel

throughput and work rate should improve. The same experiment scenario used for

measuring the SAAM Channel throughput and work rate was repeated for the new

channel to verify this hypothesis. Figure 5.1 shows the test bed used in the experiment.

Figure 5.1 Test Bed For Studying Impact of Self-Dispatching on Channel
Throughput and Work Rate

Self-dispatching was started for Listener 3 when its event handling time reached

10 milliseconds. The channel throughput and work rate were monitored for the duration

CHANNEL Talker 2

Listener 1

Listener 2

Listener 3 Talker 3

Talker 1

60

of the experiment. The results are compared to those of the SAAM Channel in Figure

5.2a and Figure 5.2b.

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

1 3 5 7 9 11 13 15

Listener 3 Event Handling Time (milisecond)

R
 (

E
ve

nt
 p

er
 s

ec
on

d)

New Channel SAAM Channel

Figure 5.2a Effect of Self-Dispatching on Channel Throughput

0

30
0

60
0

90
0

12
00

15
00

1 3 5 7 9 11 13 15

Listener 3 Event Handling Time (milisecond)

W
 (

E
ve

nt
 p

er
 s

ec
on

d)

New Channel SAAM Channel

Figure 5.2b Effect of Self-Dispatching on Channel Work Rate

Self-dispatching enabled

Self-dispatching enabled

61

As anticipated, in the first phase of the experiment, the channel throughput and

work rate decreased steadily as the event-handling time for Listener 3 was increased

without self-dispatching. As soon as self-dispatching was enabled for Listener 3, the

average event delivery time decreased resulting in an increase to the channel throughput.

The throughput quickly returned to the level observed before the event-handling time of

Listener 3 was increased. Additionally, the channel work rate increased significantly and

remained stable despite steadily increasing the event handling time of Listener 3.

As discussed in Chapter 3, a current SAAM channel’s throughput and work rate

depend on the event handling time of each of its listeners. The new channel allows a

developer to mitigate this dependency by providing a self-dispatching mechanism.

2. Channel Access Delay and Event Talk Time

The new channel design reduces event talk times significantly by buffering events

in the channel scheduler. Invoking the talk methods only incurs delay for pushing the

event into the channel scheduler. Unlike in the existing SAAM channel model, a talker

does not have to wait until its event is delivered to all listeners. The reduction of

individual event talk time consequently causes channel access delays to decrease.

Another experiment was performed to evaluate the channel access delays and

event talk times of the new channel design. The test bed shown in Figure 5.1 was again

used. For the experiment, the number of talkers was increased gradually, and the

corresponding average channel access delay and event talk time were measured.

The results are depicted in Figure 5.3 and Figure 5.4. The event talk time and

channel access delay were a few microseconds in contrast to the millisecond range for the

existing SAAM channel. These results show that the new channel design can handle a

larger number of channel talkers without causing scalability problems.

62

35 38
43

54

62

0

10

20

30

40

50

60

70

1 2 3 4 5

Number of Talkers

Tt
 (

 m
ic

ro
se

co
nd

)

Figure 5.3 Event Talk Time versus Number of Talkers

8
11

15

22

29

0

5

10

15

20

25

30

35

1 2 3 4 5

Number of Talkers

D
 (m

ic
ro

se
co

nd
s)

Figure 5.4 Channel Access Delay versus Number of Talkers

3. Scalability and Thread Count

In the new channel design, each channel employs one thread to perform its

functionality. The thread dispatches events from the channel’s scheduler to the channel’s

63

listeners. This is necessary for event buffering, which is fundamental to minimizing the

event talk time and channel access delay.

Since some systems can support only a limited number of threads, minimizing the

channel (thread) count may be an important consideration. The new channel design

addresses this scalability issue by providing support for event filtering and two-way

communication. It does not restrict the number of participants for a channel and an object

can be connected to both ends of a channel (being both a talker and listener) at the same

time. As a result, it is feasible to reduce the number of required channels for an

application, and thus the thread count, by increasing the number of participants on

instantiated channels for that application.

4. Adaptability and Functional Flexibility of New Channel

The new channel design supports all event types (Java classes). It uses a simple

and extensible event model instead of using a detailed, highly structured, and application-

specific model. This generic event structure makes the channel package easily adaptable

to either existing or new projects.

As discussed earlier, the new design partitions channel service into independent

tasks, such as scheduling, filtering, and event dispatching. Developers may customize the

functionality of each of these tasks to meet their specific needs. They may choose to use a

particular scheduler for a channel. They may also use a specific set of event filters or

activate self-dispatching for a listener. This functional flexibility makes the new channel

configurable and tunable to meet different requirements for different projects.

5. Manageability

The new channel package offers a ChannelAccessAuthority interface and a

ChannelManager class to help organize channels and control access of channel

participants to these channels. They provide the necessary flexibility for managing the

channels of a large application. A controller component based on them can offer a

common interface for channel participants to request channel service, control the access

to existing channels, and ensure proper priorities are assigned to channel participants.

64

6. Ease of Use

A new channel can easily be constructed with the default channel scheduler by

providing a channel identification number.

Method names of the channel package were carefully chosen according to the

tasks performed by the methods, in order to help developers understand the channel

functionality. The documentation files of the channel package were created in HTML

format by using the javadoc utility.

a. Easy Channel Management

In SAAM, a ControlExecutive object acts as a channel manager.

SAAM talkers and listeners cannot register with or talk to channels directly. They can

only interact with channels via the ControlExecutive for monitoring and delivery of

all traffic on the existing channels. The ControlExecutive class overrides the

methods of the SAAM Channel to achieve this purpose. However, this design adds extra

cost and complexity to the ControlExecutive class.

One of the ideas behind the ChannelManager class in the new channel

package is to provide a built- in and ready-to-use common interface for all channel

participants when developers want to manage all channels and event traffic from a central

component.

b. Easy Self-Dispatching

A listener with a long event handling time blocks the channel dispatcher

thread and the other channel listeners. With the new channel design, developers can

eliminate this problem by enabling self-dispatching for that listener.

The same situation also appears when programming with the Java Event

Model. This is because all Java events are, by default, executed in a single thread, the

event dispatching thread. Java creators documented this and left the creation and

handling of new threads to programmers when there is a need to perform lengthy

operations as resulting response to an event. In comparison, the self-dispatching

65

mechanism described herein is much more programmer friendly. All thread creation and

synchronization issues are handled internally and re transparent to the developers.

B. INTEGRATION OF CHANNEL PACKAGE AND SAAM PROTOTYPE

In order to integrate the new channel design into the SAAM prototype, some

modifications and additions were made to the existing SAAM code. In this chapter, these

modifications and additions are described.

1. Removing Obsolete Classes and Interfaces

The new channel package was added into the org.saamnet directory. The

following classes and interfaces that are part of the old channel implementation were

removed from the existing SAAM code:

• org.saamnet.saam.control.Channel class

• org.saamnet.saam.event.ChannelException class

• org.saamnet.saam.event.SaamListener interface

• org.saamnet.saam.event.SaamTalker interface

The new channel event model implementation can encapsulate any Java object in

an event. Therefore the current SAAM event and message structure were preserved. As

depicted in Figure 5.5, SAAM events are now encapsulated in a generic ChannelEvent

object. Preserving the existing event structure reduced the complexity of the integration

effort.

All SAAM classes that implemented the SaamListener interface have been

modified to implement the new ChannelListener interface.

66

Figure 5.5 Encapsulating SAAM Events in ChannelEvent Structure

2. PermissionTableEntry Class

The PermissionTableEntry class was created to determine whether or not a

channel participant has access to a given channel. A channel permission entry is created

by providing the identification number of the channel and specifying the channel

participants allowed to access this channel. The following method constructs an instance

of PermissionTableEntry class:

• PermissionTableEntry (int channel_id,

 String [] allowedTalkers,

 String [] allowedListeners)

It contains three simple methods for accessing the entry attributes for a channel.

These methods are getValidChannel_Id, isValidTalker and isValidListener. Additionally,

its getSaamPermissions method returns a static permission table, as an array of

permission table entries, containing the permissions for all channels, which are currently

used in SAAM prototype, after the integration.

long timestamp

int eventPriority

int talkerPriority

Object SAAMEvent

Object talker

67

3. Changes to ControlExecutive Class

As mentioned earlier, the existing ControlExecutive class overrides methods

of the SAAM Channel to control the monitoring and delivery of all traffic on the existing

channels. This adds extra complexity to the ControlExecutive class.

For the integration, all channel management related methods were removed from

the ControlExecutive class. An instance of the ChannelManager class was added

to the ControlExecutive class as a new data member, providing a common interface

for channel access. The ControlExecutive class was also modified to implement the

ChannelAccessAuthority interface. When the channel manager object is

instantiated it includes a reference to the ControlExecutive object as a channel access

control authority object. A getChannelManager method was added to the

ControlExecutive class to provide a reference to the embedded channel manager for

other SAAM components.

All SAAM components now request channel service via the channel manager,

with authorization performed by the ControlExecutive object.

4. Reducing the Number of Channels

The number of channels in the existing SAAM prototype depends on the number

of interfaces and application agents in a node. When a new network interface is added to

the node, a scheduler agent and a Network Interface Card (NIC) instance are created for

the new interface automatically. In order to provide the event communication between

these newly created components and the routing algorithm component, five new channels

must be created. This scenario is illustrated in Figure 5.6 with each arrow representing a

channel.

68

Figure 5.6 Necessary Channels for A New Interface on Existing SAAM Prototype

With integration of the new channel package to the SAAM prototype, a group of

existing channels that are used for the same type of components were aggregated into one

single channel by using the event filtering capability of the new channel design. A new

channel is created only when new functionality (e.g., an application agent) is installed on

a SAAM node. For example, only one channel is now used between all interfaces and

their schedulers. Consequently, the number of channels for a given node no longer

depends on the number of interfaces on that node.

Table 5.1 shows all the channels and their participants in the SAAM prototype

after the integration. All talkers and listeners have the default priority of zero in each

channel. To ensure fairness between registered channel participants a

PerTalkerRoundRobin scheduler is used.

Routing Algorithm

Interface 1

Scheduler 1

NIC 1

Interface 2

Scheduler 2

NIC 2

Interface n

Scheduler n

NIC n

69

CHANNEL ID CHANNEL TALKERS CHANNEL LISTENERS CHANNEL SCHEDULER

80010 Control Executive Transport Interface Priority

Transport Interface 80020

All Interfaces

Routing Algorithm Per Talker Round Robin

80030 Routing Algorithm Transport Interface Priority

80040 Routing Algorithm All Interfaces Priority

80050 All Interfaces All Schedulers Per Talker Round Robin

80060 All NICs

Routing Algorithm

All Interfaces Per Talker Round Robin

80070 All Schedulers All NICs Per Talker Round Robin

80080 All NICs Translator Per Talker Round Robin

80090 Translator

TranslatorPortListener

All NICs Priority

80100 Translator

TranslatorPortListener

Transport Interface

Packet Factory Per Talker Round Robin

Table 5.1 New Channel Structure in SAAM Prototype

5. Event Priorities

SAAM fulfills its functionality by communicating control messages between

SAAM nodes. Therefore, losses of control traffic should be minimized to increase the

reliability of the SAAM network and to recover from component failures quickly. For

example, the loss of a flow-response message, which is sent to a SAAM router by an

active SAAM server, would cause network resources to be wasted.

70

In order to give precedence to SAAM control traffic, a two- level event priority

scheme was defined for SAAM events in the ControlExecutive class:

• public static final SAAMEVENT_PRIORITY_HIGH = 10;

• public static final SAAMEVENT_PRIORITY_LOW= 0;

The ControlExecutive and Translator classes were modified to assign high

priority to SAAM control traffic and low priority to data traffic. Other classes were also

modified to propagate priorities of events within the SAAM protocol stack.

6. Additions to SAAM GUI

The Channel and ChannelManager classes record channel activities for

debugging purposes. The existing SAAM GUI shows only the existing channel

identification numbers and participants of these channels. The main GUI of a SAAM

node was modified to show debugging records of channels and the channel manager as

illustrated in Figure 5.7.

Figure 5.7 Snapshot of New Channel Debug Window

Router B IDemoslalion Poit: 9004] [Emulation Poil: 90031 [Currently displa

File Protocol Stack Routing Tables Active Channels Open Ports Application Agents

80100 80030 80050 23584 80070

80060 28698

Channel created: 80070
Channel scheduler: org.saamnet.channel.PerTalker_RR_Scheduler
A new listener was added to channel :NIC0
Listener Priority :10
ft, new talker was added to channel :Scheduler#0
Talker Priority :10
A new listener was added to channel :NIC1
Listener Priority :10
A new talker was added to channel :Scheduler#1
Talker Priority :10

71

VI. CONCLUSION

In this thesis, a new, generic, highly adaptable, and flexible event channel was

designed and implemented. The main product is a Java utility package, called “channel.”

This package was designed to help Java application developers create or enhance large

systems using an event-based programming approach. The new channel design has

several demonstrated performance advantages over existing event channel

implementations. The flexibility and adaptability of the channel package was also

validated by a successful upgrade of the channel mechanism of the SAAM prototype

system. The remaining sections describe several lessons learned from this thesis effort

and identify potential future work required to enhance the channel package.

A. LESSONS LEARNED

1. Programming with Threads

 In the implementation phase of this work, many thread issues arose. Although

using multiple threads in a program offers important benefits, it also requires a good

understanding of thread related concepts like synchronization, race conditions, and

deadlock avoidance. This understanding took considerable time to acquire. Multi-thread

programming appears, on the surface, to be easy with Java. However, it is difficult to get

it right.

2. Integration with SAAM Prototype

Integration of the new channel package into the SAAM prototype turned out to be

one of the more difficult parts of this thesis. This is because the SAAM prototype has

more than two hundred Java classes and most of the SAAM components use event

channels to communicate with each other. All of these components must be modified to

work properly with the new channel design. It was necessary to understand the SAAM

concepts and functionality completely in order to configure and test the new channels

properly.

72

B. FUTURE WORK

1. Communication Between Distributed Applications

The current channel model provides an event communication mechanism between

components of one application only. However, the channel model can be extended to

support event communication between different, even distributed, applications, as well.

To do so, it would be necessary to define an appropriate channel naming convention and

develop a communication protocol to deliver events across process or network

boundaries.

2. Automatic Sense for Self-Dispatching

For a channel, the event handling times of its listeners affect the channel

throughput directly. Self-dispatching helps mitigate this problem. A channel listener may

request its events to be dispatched by a separate thread by invoking the channel’s

startListenerSelfDispatch method.

Alternatively, an auto-sense mechanism can be embedded into the channel

implementation to measure the event-handling time of each listener and automatically

activate self-dispatching for a listener when specified criteria are met. In this manner,

developers would no longer have to determine a priori which listeners require self-

dispatching to optimize the throughput of a channel. This results in greater flexibility as

it eliminates the need to hard-code when and where to initiate self-dispatching behavior

on the part of specific listeners. Instead, the developers can focus on setting appropriate

criteria for self-dispatching.

73

APPENDIX A. CHANNEL PACKAGE

package org.saamnet.channel;

import java.util.Vector;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Enumeration;
import java.awt.*;
import javax.swing.*;

/**
* Channel is the core class that provides an event delivery service between
* channel talkers and channel listeners. Its main tasks include scheduling,
* filtering, and dispatching of events. Developers may customize how these
* tasks will be carried out for individual channels according to their
* application requirements.
*/

public class Channel implements ChannelListener,Runnable
{

 /**
 * Keeps the default priority for talkers
 */
 public static final int DEFAULT_TALKER_PRIORITY=0;

 /**
 * Keeps the default priority for listeners
 */
 public static final int DEFAULT_LISTENER_PRIORITY=0;

 /**
 * Keeps the identification number of this channel
 */
 private int channel_Id;

 /**
 * Keeps the number of delivered events
 */
 private int eventDelivered =0;

 /**
 * Keeps the number of accepted events
 */
 private int eventAccepted =0;

74

 /**
 * Keeps the number of lost events
 */
 private int eventLoss =0;

 /**
 * Scheduler of this channel. Scheduler can be one of built-in schedulers
 * or developers can built new schedulers meeting their requirements by
 * implementing ChannelScheduler interface.
 * Scheduler accepts events from talkers and provides events to channel
 * dispatcher thread according to its scheduling algorithm.
 */
 private ChannelScheduler scheduler;

 /**
 * Keeps the talkers registered with this channel
 */
 private Hashtable talkers;

 /**
 * Keeps the listeners which are served by channel dispatcher thread.
 * Listeners will remove from this list when they are upgraded to
 * self-dispoatching.
 */
 private Vector nonSelfDispatchListeners;

 /**
 * Keeps the listeners which have their own dispatching threads.
 * Listeners will remove from this list when their self-dispatching
 * threads are suspended or stopped.Self-dispatching listeners get the
 * events earlier than non-selfdispatching listeners, regardless of
 * their priority
 */
 private Vector selfDispatchListeners;

 /**
 * Channel event dispatcher thread. This thread pulls the events from
 * channel scheduler and delivers them to listeners.
 *
 */
 private Thread dispatcher;

 /**
 * Keeps the status channel dispatcher thread;asleep or not
 */
 private boolean dispatcherThreadAsleep = false;

 /**
 * The synchronization lock for channel dispatcher
 */

75

 private Object theDispatcherThreadLock= new Object();

 /**
 * Keeps channel debugging statements
 */
 private JTextArea debugText = new JTextArea();

 /**
 * Constructs a channel with default built-in scheduler type.
 * Default scheduler type is FIFOSCHEDULER.
 * @param channel_Id Integer identification number for this channel
 */
 public Channel(int channel_Id)
 {
 this(channel_Id,new FIFOScheduler());
 }// end of constructor

 /**
 * Constructs a channel with custom scheduler. Developer can use
 * his/her own scheduler according to needs by implementing ChannelScheduler
 * interface.
 * @param channel_Id Integer identification number for this channel
 * @param scheduler Developer's custom scheduler
 */
 public Channel(int channel_Id, ChannelScheduler sch)
 {
 this.channel_Id = channel_Id;
 this.talkers = new Hashtable();
 this.nonSelfDispatchListeners = new Vector();
 this.selfDispatchListeners = new Vector();
 this.dispatcher = new Thread(this);
 this.scheduler = sch;
 String schedulerClass = (scheduler.getClass()).getName();
 if(schedulerClass.equals("org.saamnet.channel.PerTalker_RR_Scheduler"))
 {
 ((PerTalker_RR_Scheduler)scheduler).setParentChannel(this);
 }
 dispatcher.start();
 debugText.append("Channel created : "+ Integer.toString(channel_Id)+
 "\nChannel scheduler : "+ scheduler.getClass().getName()+"\n");
 }// end of constructor

 /**
 * Talkers use this method to push an event to channel without
 * an event priority.Channel encapsulates this event as an ChannelEvent
 * object with default priority (0).
 * @param talker Event owner
 * @param event Event object

76

 */
 public void talk (Object talker,Object event)
 {
 ChannelEvent newEvent = new ChannelEvent(talker,event);
 this.talk(newEvent);
 }//end of talk() method

 /**
 * Talker use this method to push an event to channel in form of
 * ChannelEvent object.
 * @param event An instance of ChannelEvent class
 */
 synchronized public void talk (ChannelEvent event)
 {
 if (isRegisteredTalker(event.getTalker()))
 {
 eventAccepted++;
 int talker_priority = ((Integer) talkers.get(event.getTalker())).intValue();
 event.setTalkerPriority(talker_priority);
 boolean success = scheduler.push(event);
 if(! success) eventLoss++;
 synchronized (theDispatcherThreadLock)
 {
 if (dispatcherThreadAsleep)
 {
 theDispatcherThreadLock.notify();
 }
 }
 }
 else
 {
 String warning = "\nUnregistered Talker. Access Denied !"+
 "\nTalker: "+event.getTalker().toString()+
 "\nChannel Id: "+ Integer.toString(channel_Id);
 System.out.println (warning);
 debugText.append(warning+"\n");
 }
 }//end of talk() method

 /**
 * Talkers use this method to push an event to channel with its priority.
 * Channel encapsulates this event as a ChannelEvent object in behalf of
 * talkers
 * @param talker Event owner
 * @param event Event object
 * @param priority Event priority
 */
 public void talk (Object talker,Object event,int priority)
 {
 ChannelEvent newEvent = new ChannelEvent(talker,event,priority);
 this.talk(newEvent);

77

 }//end of talk() method

 /**
 * Channel also implements ChannelListener interface so a channel can
 * register with another channel as a listener. This makes channels
 * pipable to each others.
 * @param event Channel event
 */
 public void receiveEvent(ChannelEvent event)
 {
 this.talk(event);
 }//end of receiveEvent() method

 /**
 * Adds a new talker to this channel with priority
 * @param talker a channel talker
 * @param priority talker priority
 * @return Returns true if adding talker is successful else false.
 */
 public boolean addTalker(Object talker, int priority)
 {
 if(! talkers.containsKey(talker))
 {
 talkers.put(talker, new Integer (priority));
 String info = "A new talker was added to channel :"+talker.toString()+
 "\nTalker Priority :" + priority;
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning = "Adding talker to channel was failed."+
 "\nThis talker has already been added into channel"+
 "\nTalker : "+talker.toString();
 debugText.append(warning+"\n");
 return false;
 }
 }//end of addTalker() method

 /**
 * Adds a new talker to this channel with default priority
 * @param talker a channel talker
 * @return Returns true if adding the talker is successful else false.
 */
 public boolean addTalker(Object talker)
 {
 return this.addTalker(talker,DEFAULT_TALKER_PRIORITY);
 }//end of addTalker() method

 /**

78

 * Adds a new listener to this channel in the form of ChannelListenerItem.
 * ChannelListenerItem class encapsulates a channel listener with specified
 * priority and a given filter object.
 * @param listenerItem An instance of ChannelListenerItem
 * @return Returns true if adding the listener is successful else false.
 */
 public boolean addListener(ChannelListenerItem listenerItem)
 {
 if(! isExistingListener(listenerItem.getListener()))
 {
 insertListener(nonSelfDispatchListeners,listenerItem);
 String info = "A new listener was added to channel :"+
 (listenerItem.getListener()).toString()+
 "\nListener Priority :" + listenerItem.getListenerPriority();
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning = "Adding listener to channel was failed."+
 "\nThis listener has already been added into channel"+
 "\nListener : "+(listenerItem.getListener()).toString();
 debugText.append(warning+"\n");
 return false;
 }
 }//end of addListener() method

 /**
 * Adds a new listener to this channel without priority and filter
 * @param listener A channel listener
 * @return Returns true if adding the listener is successful else false.
 */
 public boolean addListener(ChannelListener listener)
 {
 ChannelListenerItem newListener = new ChannelListenerItem(listener);
 return this.addListener(newListener);
 }//end of addListener() method

 /**
 * Adds a new listener to this channel with a specified priority
 * @param listener A channel listener
 * @param priority Listener's priority
 * @return Returns true if adding the listener is successful else false.
 */
 public boolean addListener(ChannelListener listener, int priority)
 {
 ChannelListenerItem newListener = new ChannelListenerItem(listener,priority);
 return this.addListener(newListener);
 }//end of addListener() method

 /**

79

 * Adds a new listener to this channel with a given filter object
 * @param listener A channel listener
 * @param filter Listener's filter
 * @return Returns true if adding the listener is successful else false.
 */
 public boolean addListener(ChannelListener listener, ChannelFilter filter)
 {
 ChannelListenerItem newListener = new ChannelListenerItem(listener,filter);
 return this.addListener(newListener);
 }//end of addListener() method

 /**
 * Adds a new listener to this channel with a specified priority and
 * a given filter object
 * @param listener A channel listener
 * @param filter Listener's filter
 * @param priority Listener priority
 * @return Returns true if adding the listener is successful else false.
 */
 public boolean addListener(ChannelListener listener, ChannelFilter filter, int priority)
 {
 ChannelListenerItem newListener = new ChannelListenerItem(listener,filter,priority);
 return this.addListener(newListener);
 }//end of addListener() method

 /**
 * Inserts a listener to specified listeners vector according to
 * its priority.Threre are two possible vectors :
 * nonSelfDispatchListeners and selfDispatchListeners
 * @param listeners listeners vector which the listener will be inserted
 * @param newListener A new listener
 */
 private void insertListener(Vector listeners,ChannelListenerItem newListener)
 {
 synchronized(listeners)
 {
 Iterator i = listeners.iterator();
 int index = 0;
 while(i.hasNext())
 {
 ChannelListenerItem currentListener = (ChannelListenerItem) i.next();
 if(currentListener.getListenerPriority() >= newListener.getListenerPriority())
 {
 index ++;
 }
 else break;
 }
 listeners.insertElementAt(newListener,index);
 }
 }//end of insertListener() method

80

 /**
 * Removes a registered talker from this channel
 * @param talker Talker object to be removed
 * @return Returns true if removing of the talker is successful else false.
 */
 public boolean removeTalker(Object talker)
 {
 if(talkers.containsKey(talker))
 {
 talkers.remove(talker);
 String info = "This talker was removed from channel"+talker.toString();
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning="There is no such registered talker on channel "+channel_Id+
 "\nTalker :"+ talker;
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of removeTalker() method

 /**
 * Removes a registered listener from this channel
 * @param listener listener object to be removed
 * @return Returns true if removing of the listener is successful else false.
 */
 public boolean removeListener(ChannelListener listener)
 {
 boolean isFound = false;
 if(isExistingListener(listener))
 {
 Iterator i = nonSelfDispatchListeners.iterator();
 while(i.hasNext())
 {
 ChannelListenerItem currentListener= (ChannelListenerItem) i.next();
 if(currentListener.getListener().equals(listener))
 {
 i.remove();
 isFound = true;
 break;
 }
 }

 if(! isFound)
 {
 Iterator j = selfDispatchListeners.iterator();
 while(j.hasNext())
 {

81

 ChannelListenerItem currentListener= (ChannelListenerItem) j.next();
 if(currentListener.getListener().equals(listener))
 {
 j.remove();
 break;
 }
 }
 }
 String info = "This talker was removed from channel"+listener;
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning = "There is no such registered listener on channel "+channel_Id+
 "\nListener :"+listener;
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of removeListener() method

 /**
 * Retrieves the channel listener item object that is associated with specified listener
 * @param listener Channel listener
 * @return Returns channel listener item object, which encapsulates the specified
 * channel listener. If there is no such channel listener, returns null.
 */
 private ChannelListenerItem retrieveListenerItem(ChannelListener lst)
 {
 boolean isFound = false;
 ChannelListenerItem item = null;
 Iterator i = nonSelfDispatchListeners.iterator();
 while(i.hasNext())
 {
 ChannelListenerItem currentListener= (ChannelListenerItem) i.next();
 if(currentListener.getListener().equals(lst))
 {
 isFound = true;
 item = currentListener;
 break;
 }
 }

 if(! isFound)
 {
 Iterator j = selfDispatchListeners.iterator();
 while(j.hasNext()){
 ChannelListenerItem currentListener= (ChannelListenerItem) j.next();
 if(currentListener.getListener().equals(lst))
 {

82

 item = currentListener;
 break;
 }
 }
 }
 return item;
 }//end of retrieveListenerItem() method

 /**
 * Add the specified filter object to desired channel listener.
 * @param listener Channel listener
 * @param newFilter Filter object,which will be added to listener
 * @return Returns true if addition of filter is successful else false.
 */
 public boolean addFilter(ChannelListener listener,ChannelFilter newFilter)
 {
 ChannelListenerItem item = retrieveListenerItem(listener);
 if(item != null)
 {
 item.addFilter(newFilter);
 String info = "A new filter object is added to this listener :"+item.getListener();
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning = "There is no such listener to add a new filter"+
 "\nUnfound Listener :"+ item.getListener();
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of addFilter() method

 /**
 * Remove the specified filter object from desired channel listener.
 * @param listener Channel listener
 * @param oldFilter Filter object,which will be removed from the listener
 * @return Returns true if removal of filter is successful else false.
 */
 public boolean removeFilter(ChannelListener listener,ChannelFilter oldFilter)
 {
 ChannelListenerItem item = retrieveListenerItem(listener);
 if(item != null)
 {
 item.removeFilter(oldFilter);
 String info = "The old filter object is removed from this listener :"
 +item.getListener();
 debugText.append(info+"\n");
 return true;
 }

83

 else
 {
 String warning = "There is no such listener to remove a filter"+
 "\nUnfound Listener :"+ item.getListener();
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of removeFilter() method

 /**
 * Remove all filter objects from desired channel listener.
 * @param listener Channel listener
 * @return Returns true if removal of filters is successful else false.
 */
 public boolean removeAllFilters(ChannelListener listener)
 {
 ChannelListenerItem item = retrieveListenerItem(listener);
 if(item != null)
 {
 item.removeAllFilters();
 String info = "All filter objects is removed from this listener :"
 +item.getListener();
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning = "There is no such listener to remove filters"+
 "\nUnfound Listener :"+ item.getListener();
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of removeAllFilters() method

 /**
 * Gets the channel id.
 * @return channel id
 */
 public int getChannel_ID()
 {
 return channel_Id;
 }//end of getChannel_ID() method

 /**
 * Checks that talker is registered with this channel or not.
 * @param talker Talker object to be tested
 * return true if the talker is registered with this channel,
 * false otherwise
 */

84

 public boolean isRegisteredTalker(Object talker)
 {
 return talkers.containsKey(talker);
 }//end of isRegisteredTalker() method

 /**
 * Checks that listener is registered with this channel or not.
 * @param listener channel listener to be tested
 * @return Returns true if the listener is registered with this channel,
 * false otherwise
 */
 public boolean isRegisteredListener(ChannelListener listener)
 {
 return isExistingListener(listener);
 }//end of isRegisteredListener() method

 /**
 * Test if this channel has any registered talker
 * @return Returns true if this channel has any registered talker,
 * false otherwise
 */
 public boolean hasTalkers()
 {
 return (!talkers.isEmpty());
 }//end of hasTalkers() method

 /**
 * Test if this channel has any registered listener
 * @return Returns true if this channel has any registered listener,
 * false otherwise
 */
 public boolean hasListeners()
 {
 return (!(nonSelfDispatchListeners.isEmpty() && selfDispatchListeners.isEmpty()));
 }//end of hasListeners() method

 /**
 * Searchs the listeners' vectors to figure out if this listener is an
 * existing listener
 * @param listener Channel listener to be tested
 * @return returns true if if this listener is an existing listener,
 * false otherwise
 */
 private boolean isExistingListener(ChannelListener listener)
 {
 boolean isFound = false;
 Iterator i = nonSelfDispatchListeners.iterator();
 while(i.hasNext())
 {
 ChannelListenerItem currentListener= (ChannelListenerItem) i.next();
 if(currentListener.getListener().equals(listener))

85

 {
 isFound = true;
 break;
 }
 }

 Iterator j = selfDispatchListeners.iterator();
 if(! isFound)
 {
 while(j.hasNext())
 {
 ChannelListenerItem currentListener= (ChannelListenerItem) j.next();
 if(currentListener.getListener().equals(listener))
 {
 isFound = true;
 break;
 }
 }
 }
 return isFound;
 }//end of isExistingListener() method

 /**
 * Starts self-dispatching for a listener.Channel starts self-dispatching
 * by using ChannelListenerItem object which encapsulates the listener.
 * ChannelListenerItem class is capable to create a dedicated
 * event dispatcher thread for this listener. After starting the
 * self-dispatching, channel will not call listener's recieveEvent method
 * anymore.Channel will put the coming events into the listener's event queue,
 * self-dispatching thread will deliver the events in this queue.
 * This listener will also transfered from nonSelfDispatchListeners list
 * to selfDispatchListeners list.
 *
 * @param listener Channel listener to be upgraded to self dispatching
 * @return Returns true if starting self-dispatchinng is succesfull, else false.
 */
 public boolean startListenerSelfDispatch(ChannelListener listener)
 {
 if(isExistingListener(listener))
 {
 Iterator i = nonSelfDispatchListeners.iterator();
 while(i.hasNext())
 {
 ChannelListenerItem currentListener= (ChannelListenerItem) i.next();
 if(currentListener.getListener().equals(listener))
 {
 i.remove();
 currentListener.startSelfDispatching();
 insertListener(selfDispatchListeners,currentListener);
 break;
 }

86

 }
 String info = " Self-dispatching is started for this listener :"+listener;
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning = "There is no such registered listener to"+
 "start self-dispatching"+"\nUnfound Listener :"+listener;
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of startListenerSelfDispatch() method

 /**
 * Suspends self-dispatching for a listener. Channel suspends the self-
 * dispatching gracefully. It waits until the listener's event queue is
 * empty. This guarantees that listener will get events in order and
 * listener will not get an event from channel dispatcher and self
 * dispatcher at the same time.
 * To fulfill this requirements, channel sets suspend-request flag true
 * and then channel dispatcher checks appropriate situation to take over
 * the dispatching.
 * This process will not end the self-dispatching thread.Self-dispatching
 * thread waits for resuming or stopping request.
 *
 * @param listener Channel listener to be downgraded to channel dispatching
 * by suspending
 * @return Returns true if suspending self-dispatchinng is succesfull, else false.
 */
 public boolean suspendListenerSelfDispatch(ChannelListener listener)
 {
 if(isExistingListener(listener))
 {
 Iterator i = selfDispatchListeners.iterator();
 while(i.hasNext())
 {
 ChannelListenerItem currentListener= (ChannelListenerItem) i.next();
 if(currentListener.getListener().equals(listener))
 {
 currentListener.setSuspendRequest(true);
 break;
 }
 }
 String info = " Self-dispatching is suspended for this listener :"+listener;
 debugText.append(info+"\n");
 return true;
 }
 else
 {

87

 String warning = "There is no such registered listener to"+
 "suspend self-dispatching"+"\nUnfound Listener :"+listener;
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of suspendListenerSelfDispatch() method

 /**
 * Resumes a suspended self-dispatcher.
 *
 * @param listener Channel listener to be upgraded to self-dispatching
 * by resuming its existing suspended self-dispatcher
 * @return Returns true if resuming self-dispatchinng is succesfull, else false.
 */
 public boolean resumeListenerSelfDispatch(ChannelListener listener)
 {
 if(isExistingListener(listener))
 {
 Iterator i = nonSelfDispatchListeners.iterator();
 while(i.hasNext())
 {
 ChannelListenerItem currentListener= (ChannelListenerItem) i.next();
 if(currentListener.getListener().equals(listener))
 {
 currentListener.setResumeRequest(true);
 break;
 }
 }
 String info = " Self-dispatching is resumed for this listener :"+listener;
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning = "There is no such registered listener to"+
 "resume self-dispatching"+"\nUnfound Listener :"+listener;
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of resumeListenerSelfDispatch() method

 /**
 * Stops self-dispatching for a listener. Channel stops the self-
 * dispatching gracefully. It waits until the listener's event queue is
 * empty. This guarantees that listener will get events in order and
 * listener will not get an event from channel dispatcher and self
 * dispatcher at the same time.
 * To fulfill this requirements, channel sets stop-request flag true
 * and then channel dispatcher checks appropriate situation to take over

88

 * the dispatching.
 * This process will end the self-dispatching thread.
 *
 * @param listener Channel listener to be downgraded to channel dispatching
 * by stopping
 * @return Returns true if stopping self-dispatchinng is succesfull, else false.
 */
 public boolean stopListenerSelfDispatch(ChannelListener listener)
 {
 if(isExistingListener(listener))
 {
 Iterator i = selfDispatchListeners.iterator();
 while(i.hasNext())
 {
 ChannelListenerItem currentListener= (ChannelListenerItem) i.next();
 if(currentListener.getListener().equals(listener))
 {
 currentListener.setStopRequest(true);
 }
 }
 String info = " Self-dispatching is stopped for this listener :"+listener;
 debugText.append(info+"\n");
 return true;
 }
 else
 {
 String warning = "There is no such registered listener to"+
 "stop self-dispatching"+"\nUnfound Listener :"+listener;
 System.out.println(warning);
 debugText.append(warning+"\n");
 return false;
 }
 }//end of stopListenerSelfDispatch() method

 /**
 * Gets registered channel talkers
 * @return channel talkers
 */
 public Vector getTalkers()
 {
 Vector talkerVector = new Vector();
 Enumeration e = talkers.keys();
 while(e.hasMoreElements())
 {
 talkerVector.add(e.nextElement());
 }
 return talkerVector;
 }//end of getTalkers() method

 /**
 * Gets registered channel listeners

89

 * @return channel listeners
 */
 public Vector getListeners()
 {
 Vector copy = (Vector)selfDispatchListeners.clone();
 copy.addAll(nonSelfDispatchListeners);
 return copy;
 }//end of getListeners() method

 /**
 * Returns channel id as a string
 * @return channel id
 */
 public String toString()
 {
 return "Channel"+ channel_Id ;
 }//end of toString() method

 /**
 * This method is used by channel dispatcher thread for pulling events
 * from channel scheduler and then these events are sent to "dispatch" method
 * for delivering to listeners.
 * If scheduler is empty, channel dispatcher will sleep until arriving
 * of the scheduler's new event notification.
 *
 */
 public void run(){
 if(Thread.currentThread() != dispatcher)
 {
 throw new RuntimeException(" This is a self-running object, this"+
 " method can be called by only object itself");
 }

 while(true)
 {
 ChannelEvent current = scheduler.pull();
 if(current == null)
 {
 try
 {
 synchronized (theDispatcherThreadLock)
 {
 dispatcherThreadAsleep = true;
 theDispatcherThreadLock.wait();
 dispatcherThreadAsleep = false;
 }
 }
 catch(InterruptedException ie)
 {
 System.out.println(ie.toString());
 }

90

 }
 else
 {
 dispatch(current);
 eventDelivered++;
 }
 }
 }//end of run() method

 /**
 * This method is complimentary part of "run" method. It delivers
 * events to listeners. If listener is a non-selfdispatching listener
 * it will call the "receiveEvent" method of listener. If listener is
 * a self-dispatching listener, it will put the event into listener's
 * event queue for self-dispatching instead of calling "reciveEvent"
 * method.
 * Self-dispatching listeners are served earlier than non-selfdispatching
 * listeners, regardless of their priority.Because self-dispatching
 * listeners need much more time to handle events and we want self-
 * dispatching listeners to begin event handling as soon as possible.
 * This approach doesn't effect the non-selfdispatching listeners much
 * because channel dispatcher spends time for just putting events into self-
 * dispatching listeners' event queue.
 * This method also deals with the stop/suspend/resume requests for self
 * dispatching. It provides a graceful transition between self-dispatching
 * non-selfdispatching.
 *
 * @param item event to be dispatch
 */
 void dispatch(ChannelEvent item)
 {
 //Serve self-dispatching listeners and deal with control request(suspend & stop)
 Vector selfCopy = (Vector) selfDispatchListeners.clone();
 Iterator j = selfCopy.iterator();
 while(j.hasNext())
 {
 ChannelListenerItem currentListener = (ChannelListenerItem)j.next();
 if(currentListener.isAcceptedEvent(item)
 && !(currentListener.getListener()).equals(item.getTalker()))
 {
 if(currentListener.isSelfDispatchQueueEmpty() &&
 (currentListener.hasSuspendRequest()||
 currentListener.hasStopRequest()))
 {
 if(currentListener.hasSuspendRequest())
 {
 currentListener.setSuspendRequest(false);
 }
 if(currentListener.hasStopRequest())
 {
 currentListener.setStopRequest(false);

91

 currentListener.stopSelfDispatching();
 }
 currentListener.setSelfDispatch(false);
 selfDispatchListeners.remove(currentListener);
 insertListener(nonSelfDispatchListeners,currentListener);
 try
 {
 ((ChannelListener)currentListener.getListener()).receiveEvent(item);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
 else
 {
 currentListener.putToListenerQueue(item);
 }
 }
 }
 // Serve non-selfdispaching listeners and deal with resume requests.
 Vector copy = (Vector) nonSelfDispatchListeners.clone();
 Iterator i = copy.iterator();
 while(i.hasNext())
 {
 ChannelListenerItem currentListener = (ChannelListenerItem)i.next();
 if(currentListener.isAcceptedEvent(item)
 && !(currentListener.getListener()).equals(item.getTalker()))
 {
 if(currentListener.hasResumeRequest())
 {
 currentListener.setResumeRequest(false);
 currentListener.setSelfDispatch(true);
 nonSelfDispatchListeners.remove(currentListener);
 insertListener(selfDispatchListeners,currentListener);
 currentListener.putToListenerQueue(item);
 }
 else
 {
 try
 {
 ((ChannelListener)currentListener.getListener()).receiveEvent(item);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
 }
 }
 }//end of dispatch() method

92

 /**
 * Gets the debug text
 * @return Debug text area
 */
 public JTextArea getDebugText()
 {
 return debugText;
 }//end of getDebugText() method

 /**
 * Gets the number of accepted events
 * @return Returns the number of accepted events
 */
 public int getAcceptedEventCount()
 {
 return eventAccepted;
 }//end of getAcceptedEventCount() method

 /**
 * Gets the number of accepted events
 * @return Returns the number of delivered events
 */
 public int getDeliveredEventCount()
 {
 return eventDelivered;
 }//end of getDeliveredEventCount() method

 /**
 * Gets the number of accepted events
 * @return Returns the number of accepted events
 */
 public int getLostEventCount()
 {
 return eventLoss;
 }//end of getLostEventCount() method

}//end of Channel class

93

package org.saamnet.channel;

/*
*ChannelEvent class provides a data structure to encapsulate channel events.
*Talker and event data member of this class are instances of java.lang.Object class.
*Therefore,ChannelEvent class can encapsulate all objects as an event and event talker.
*An event and its talker are required to create an instance of ChannelEvent.
*Event and talker priorities are optional and default event and talker priorities are
*assigned when they are not specified. Timestamp is generated automatically according
*to the system's time in milliseconds.
*/

public class ChannelEvent
{

 /*
 * Keeps the talker of event
 */
 private Object talker;

 /*
 * Keeps the class type of talker
 */
 private Class talkerClass;

 /*
 * Keeps priority of the event
 */
 private int eventPriority;

 /*
 * Keeps priority of the talker
 */
 private int talkerPriority;

 /*
 * Keeps the event that is encapsulated by this class
 */
 private Object event;

 /*
 * Keeps the class type of event
 */
 private Class eventClass;

 /*
 * Keeps instantiation time of event
 */
 private long timestamp;

94

 /*
 * Used to direct an event to specified listener when needed
 */
 private int listenerIndex;

 /*
 * Keeps the default priority for events
 */
 public static final int DEFAULT_EVENT_PRIORITY=0;

 /*
 * Constructs a channel event with default talker and event priority
 * @param talker The talker of event
 * @param event Event object to be encapsulated
 */
 public ChannelEvent (Object talker, Object event)
 {

 this.talker = talker;
 this.talkerClass = talker.getClass();
 this.eventPriority = this.DEFAULT_EVENT_PRIORITY;
 this.talkerPriority = Channel.DEFAULT_TALKER_PRIORITY;
 this.event = event;
 this.eventClass = event.getClass();
 this.timestamp = System.currentTimeMillis();

 }// end of constructor

 /*
 * Constructs a channel event with a specified event priority
 * @param talker The talker of event
 * @param event Event object to be encapsulated
 * @param ev_priority Priority of event
 */
 public ChannelEvent (Object talker, Object event, int eventPriority)
 {

 this.talker=talker;
 this.talkerClass=talker.getClass();
 this.eventPriority=eventPriority;
 this.talkerPriority = Channel.DEFAULT_TALKER_PRIORITY;
 this.event=event;
 this.eventClass=event.getClass();
 this.timestamp = System.currentTimeMillis();

 }// end of constructor

 /*
 * Sets priority of the event.
 * @param priority Event priority

95

 */
 public void setEventPriority (int priority)
 {
 this.eventPriority=priority;
 }//end of setEventPriority() method

 /*
 * Sets priority of the talker. Channel sets talker priorities according to
 * talker registration.
 * @param priority Talker priority
 */
 public void setTalkerPriority (int priority)
 {
 this.talkerPriority=priority;
 }//end of setTalkerPriority() method

 /*
 * Sets listener's index for this event.
 * @param index listener index
 */
 public void setListenerIndex(int index)
 {
 this.listenerIndex = index;
 }//end of setListenerIndex() method

 /*
 * Gets the encapsulated event
 * @return Return the event encapsulated by this object
 */
 public Object getEvent()
 {
 return this.event;
 }//end of getEvent() method

 /*
 * Gets the class type of encapsulated event.
 * @return Returns class type of encapsulated event.
 */
 public Class getEventClass()
 {
 return this.eventClass;
 }//end of getEventClass() method

 /*
 * Gets the talker of encapsulated event.
 * @return Returns talker of the event.
 */
 public Object getTalker()
 {
 return this.talker;
 }//end of getTalker() method

96

 /*
 * Gets the class type of talker.
 * @return Returns class type of talker.
 */
 public Class getTalkerClass()
 {
 return this.talkerClass;
 }//end of getTalkerClass() method

 /*
 * Gets the priority of event
 * @return Returns event priority
 */
 public int getEventPriority()
 {
 return this.eventPriority;
 }//end of getEventPriority() method

 /*
 * Gets the priority of talker
 * @return Returns talker priority
 */
 public int getTalkerPriority()
 {
 return this.talkerPriority;
 }//end of getTalkerPriority() method

 /*
 * Gets listener's index for this event.
 * @return Returns the listener's index for this event.
 */
 public int getListenerIndex()
 {
 return this.listenerIndex;
 }//end of getListenerIndex() method

 /*
 * Gets the instantiation time of this event.Time is system time in millisecconds
 * @return Returns instantiation time of this event.
 */
 public long getTimestamp()
 {
 return this.timestamp;
 }//end of getTimestamp() method

}//end of ChannelEvent

97

package org.saamnet.channel;

/*
* Event filtering can be used to multicast the events to interested listeners
* instead of broadcasting to all listeners. Multicasting events reduce total
* delivery time spent by channel for an event. As a result, channel throughput
* will increase.On the listener side, channel listeners have to check all coming
* events to choose the desired ones without filtering. It can be guaranteed that
* channel listeners get the events that they interest when event filtering is
* employed.ChannelFilter interface is designed for providing filtering capability
* to channel. It has one simple method needed to implement.
*/

public interface ChannelFilter
{
 /*
 * Checks that if an event is acceptable or not.
 * @param event Event to be checked.
 * @return Returns true if event is acceptable, else false.
 */
 public boolean isAccepted (ChannelEvent event);

}

98

package org.saamnet.channel;

/*
* All channel listeners must implement ChannelListener interface to
* register with a channel and get events from this channel. ChannelListener
* interface contains just one method:
*
* public void recieveEvent (ChannelEvent event)
* This method is called by channel to deliver an event to registered channel
* listeners. This method should be synchronized to guarantee that no more than
* one channel dispatcher thread is allowed when a channel listener registers with
* multiple channels.
*/

public interface ChannelListener
{
 /**
 * This method is called by the Channel to pass event notifications
 * to the Objects that implement this interface.
 * @param event Channel event
 */
 public void receiveEvent(ChannelEvent event);
}

99

package org.saamnet.channel;

/*
* Channel scheduler allows channel to buffer and dispatch events to multiple
* listeners in a specific order. Channel events can be categorized in accordance
* with their talker, event types and priorities. This categorization is used to
* specify the event delivery order of channel.Channel scheduler buffers and orders
* channel events according to its scheduling policy. Channel dispatches events to
* listeners by pulling from scheduler. Channel scheduler is implemented as an
* interface to provide functional flexibility for channel. Channel forwards events
* to scheduler by calling push method. On the other hand, channel dispatches events
* by extracting from scheduler via pull method. Channel package includes three built-in
* schedulers, which implement ChannelScheduler interface. Developers can implement
* and deploy their own schedulers that meet specific requirements.
*/
public interface ChannelScheduler
{

 /*
 * Inserts an event to scheduler
 * @param event Event to be pushed
 * @return Returns true if insertion is succesful, else false due to buffer overflow
 */
 public boolean push (ChannelEvent event);

 /*
 * Extracts an event from scheduler
 * @return Returns a channel event.
 */
 public ChannelEvent pull ();

}// End of ChannelScheduler

100

package org.saamnet.channel;

import java.util.*;

/**
* This class provides a data structure for channel to keep the channel
* listeners and their properties. Listener itself, its filter and priority
* are encapsulated by this class as a channel listener item.
* This class also provides self event dispatching capability to channel
* listeners. If the execution of a listener's "receiveEvent" method takes
* long time, this will cause the other listeners to get events late. To prevent
* this handicap, channel offers self-dispatching to these listeners which need
* more excution time. Channel ask this class to create a new dedicated thread
* for dispatching events which belongs to the encapsulated listener.
* After starting the self-dispatching, channel will not call listener's recieveEvent method
* anymore.Channel will put the coming events into the listener's event queue,
* self-dispatching thread will deliver the events in this queue.
*
*/

public class ChannelListenerItem implements Runnable
{

 /**
 * Channel listener to be encapsulated by this class
 */
 private ChannelListener listener;

 /**
 * Keeps the priority of this listener
 */
 private int priority ;

 /**
 * Keeps the filters of this listener
 */
 private Vector listenerFilters;

 /**
 * Indicates that this listener has a filter or not
 */
 private boolean filterFlag = false;

 /**
 * Fifo queue for self-dispatching
 */
 private FIFOQueue listenerQueue;

 /**
 * Indicates the self dispatching

101

 */
 private volatile boolean selfDispatch = false;

 /**
 * Self-dispatching thread.
 * This thread is created when self dispatching is activated.
 */
 private Thread selfThread;

 /**
 * Indicates the status of self dispatching thread;asleep or awake.
 */
 private boolean selfThreadAsleep;

 /**
 * Channel listener to be encapsulated by this class
 */
 private Object theSelfThreadLock;

 /**
 * Indicates that self-dispatching thread will continue to run or it
 * will be ended.
 */
 private volatile boolean stopSelfDispatch;

 /**
 * Indicates that a suspend request was received for the self-dispatching
 * thread.
 */
 private boolean suspendRequest = false;

 /**
 * Indicates that a resume request was received for the self-dispatching
 * thread
 */
 private boolean resumeRequest = false;

 /**
 * Indicates that a stop request was received for the self-dispatching
 * thread.
 */
 private boolean stopRequest = false;

 /**
 * Constructs a channel listener item by encapsulating the channel
 * listener and default properties.
 * @param listener a Channel listener
 */
 ChannelListenerItem (ChannelListener listener)
 {

102

 this.listener = listener;
 this.priority = Channel.DEFAULT_LISTENER_PRIORITY;
 }// end of constructor

 /**
 * Constructs a channel listener item by encapsulating the channel
 * listener and its filter object.
 * @param listener a Channel listener
 * @param eventFilter listener's filter
 */
 ChannelListenerItem (ChannelListener listener,ChannelFilter eventfilter)
 {
 this.listener = listener;
 this.priority = Channel.DEFAULT_LISTENER_PRIORITY;
 this.listenerFilters = new Vector();
 listenerFilters.add(eventfilter);
 this.filterFlag = true;
 }// end of constructor

 /**
 * Constructs a channel listener item by encapsulating the channel
 * listener and its priority.
 * @param listener a Channel listener
 * @param priority listener's priority
 */
 ChannelListenerItem (ChannelListener listener, int priority)
 {
 this.listener = listener;
 this.priority = priority;
 }// end of constructor

 /**
 * Constructs a channel listener item by encapsulating the channel
 * listener and its filter object and priority.
 * @param listener a Channel listener
 * @param eventFilter listener's filter
 * @param priority listener's priority
 */
 ChannelListenerItem (ChannelListener listener,
 ChannelFilter eventfilter ,
 int priority)
 {
 this.listener = listener;
 this.priority = priority;
 this.listenerFilters = new Vector();
 listenerFilters.add(eventfilter);
 this.filterFlag = true;
 }// end of constructor

 /**
 * Sets this listener's priority

103

 * @param Listener's priority
 */
 void setListenerPriority(int priority)
 {
 this.priority = priority;
 }//end of setListenerPriority() method

 /**
 * Sets suspend request flag of this listener
 * @param order true if there is a request , false otherwise
 */
 void setSuspendRequest(boolean order)
 {
 suspendRequest = order;
 }//end of setSuspendRequest() method

 /**
 * Sets resume request flag of this listener
 * @param order true if there is a request , false otherwise
 */
 void setResumeRequest(boolean order)
 {
 resumeRequest = order;
 }//end of setResumeRequest() method

 /**
 * Sets stop request flag of this listener
 * @param order true if there is a request , false otherwise
 */
 void setStopRequest(boolean order)
 {
 stopRequest = order;
 }//end of setStopRequest() method

 /**
 * Tests if there is a suspend request or not.
 * @return Returns true if a request was made, false otherwise
 */
 boolean hasSuspendRequest()
 {
 return suspendRequest;
 }//end of hasSuspendRequest() method

 /**
 * Tests if there is a resume request or not.
 * @return Returns true if a request was made, false otherwise
 */
 boolean hasResumeRequest()
 {
 return resumeRequest;
 }//end of hasResumeRequest() method

104

 /**
 * Tests if there is a stop request or not.
 * @return Returns true if a request was made, false otherwise
 */
 boolean hasStopRequest()
 {
 return stopRequest;
 }//end of hasStopRequest() method

 /**
 * Tests if the self-dispatching queue is empty or not.
 * @return Returns true if the self-dispatching queue is empty,
 * false otherwise
 */
 boolean isSelfDispatchQueueEmpty()
 {
 if(isSelfDispatching())
 {
 return listenerQueue.isEmpty();
 }
 else
 {
 return false;
 }
 }//end of isSelfDispatchQueueEmpty() method

 /**
 * Sets self dispatch flag of this listener.
 * This method is used by channel to set this flag externally.
 * @param setting true for self-dispatching, false otherwise
 */
 void setSelfDispatch(boolean setting)
 {
 selfDispatch = setting;
 }//end of setSelfDispatch() method

 /**
 * Starts self-dispatching for this listener.
 * Self-dispatching thread and a fifo queue is created.
 * After starting the self-dispatching, channel gives up delivering
 * the events by calling listener's "receiveEvent" method and then
 * it starts to put the event into self-dispatching queue for self
 * delivery.
 */
 void startSelfDispatching()
 {
 if(! isSelfThreadAlive())
 {
 selfThread = new Thread(this);
 theSelfThreadLock = new Object();

105

 listenerQueue = new FIFOQueue(1000);
 selfThreadAsleep = false;
 selfDispatch = true;
 stopSelfDispatch = false;
 selfThread.start();
 }
 }//end of startSelfDispatching() method

 /**
 * Stops self dispathing for this listener.
 * This will end the self-dispatching thread.
 * Channel waits appropriate situation(when self-dispatch queue is empty)
 * to call this method for a graceful shutdown.
 */
 void stopSelfDispatching()
 {
 stopSelfDispatch = true;
 if(selfThreadAsleep)
 {
 synchronized(theSelfThreadLock)
 {
 theSelfThreadLock.notify();
 }
 }
 }//end of stopSelfDispatching() method

 /**
 * Tests if self-dispatching thread is alive or not
 * @return Returns true if it is alive, false otherwise.
 */
 public boolean isSelfThreadAlive()
 {
 if(selfThread==null) return false;
 return selfThread.isAlive();
 }//end of isSelfThreadAlive() method

 /**
 * Channel uses this method to put an event into self-dispatching
 * queue. This method notifies the self-dispatching thread if it is
 * asleep.
 * @param event event to be enqueued
 */
 void putToListenerQueue(ChannelEvent event)
 {
 listenerQueue.enqueue(event);
 if(selfThreadAsleep)
 {
 synchronized(theSelfThreadLock)
 {
 theSelfThreadLock.notify();
 }

106

 }
 }//end of putToListenerQueue() method

 /**
 * Tests if the self-dispatching is active or not
 * @return Returns true if self-dispatching is active, false otherwise
 */
 boolean isSelfDispatching()
 {
 return selfDispatch;
 }//end of isSelfDispatching() method

 /**
 * Tests if the event is acceptable by this listener or not.
 * If there is no filter object which is associated with this listener,
 * it is always acceptable.
 * Concatenation of filters is also possible. Filters of a listener are
 * stored in a vector.An event is only accepted if it passes all filters.
 * @param event Event to be tested.
 * @return Returns true if the event is acceptable, false otherwise
 */
 boolean isAcceptedEvent(ChannelEvent event)
 {
 if(filterFlag)
 {
 Iterator i = listenerFilters.iterator();
 while(i.hasNext())
 {
 if(! ((ChannelFilter) i.next()).isAccepted(event))
 {
 return false;
 }
 }
 return true;
 }
 else
 {
 return true;
 }
 }//end of isAcceptedEvent() method

 /**
 * Add a new filter to listener filter vector
 * @param newFilter New filter object to be added
 */
 void addFilter(ChannelFilter newFilter)
 {
 if(filterFlag)
 {
 listenerFilters.add(newFilter);
 }

107

 else
 {
 if(listenerFilters == null)
 {
 listenerFilters = new Vector();
 }
 listenerFilters.add(newFilter);
 filterFlag=true;
 }
 }//end of addFilter() method

 /**
 * Remove an old filter from listener filter vector.
 * @param newFilter Old filter object to be removed
 */
 void removeFilter(ChannelFilter oldFilter)
 {
 if(filterFlag)
 {
 listenerFilters.remove(oldFilter);
 }
 }//end of removeFilter() method

 /**
 * Remove all filters that are belong to this listener.
 * After this, all events will be accepted until adding
 * adding a new filter
 */
 void removeAllFilters()
 {
 if(filterFlag)
 {
 listenerFilters.removeAllElements();
 filterFlag = false;
 }
 }//end of removeAllFilters() method

 /**
 * Gets the channel listener which is encapsulated by this class
 * @return Returns channel listener
 */
 public ChannelListener getListener()
 {
 return listener;
 }//end of getListener() method

 /**
 * Gets this listener's priority
 * @return Listener's priority
 */
 public int getListenerPriority()

108

 {
 return priority;
 }//end of getListenerPriority() method

 /**
 * Gets the filter which belongs to this listener
 * @return Returns the listener's filter
 */
 public Vector getListenerFilters()
 {
 return (Vector) listenerFilters.clone();
 }//end of getListenerFilters() method

 /**
 * Overides the Object's "toString()" method.
 * @return Returns string representation of this listener.
 */
 public String toString()
 {
 return listener.toString();
 }//end of toString() method

 /**
 * The "run" method for self-dispatching thread. If a channel listener ask
 * a new thread due to its "recieveEvent" method which takes long time, this
 * class creates a new thread on behalf of this listener and the other
 * listeners in the channel. The other listeners will not suffer from this
 * listener's long execution after self-dispatching.
 * Channel controls the starting,suspending,resuming and stopping of this
 * self-dispatching thread.
 */
 public void run()
 {
 if(Thread.currentThread() != selfThread)
 {
 throw new RuntimeException(" This is a self-running object, this"+
 " method can be called by only object itself");
 }

 while(!stopSelfDispatch)
 {
 if(listenerQueue.isEmpty())
 {
 try
 {
 synchronized(theSelfThreadLock)
 {
 selfThreadAsleep = true;
 theSelfThreadLock.wait();
 selfThreadAsleep = false;
 }

109

 }
 catch(InterruptedException ie)
 {
 ie.printStackTrace();
 }
 }
 else
 {
 ChannelEvent top = (ChannelEvent)listenerQueue.dequeue();
 listener.receiveEvent(top);
 }
 }
 }//end of run() method
}//end of ChannelListenerItem

110

package org.saamnet.channel;

import java.util.*;

/**
* This class is a built-in channel event filter for channel package.
* It implements Filter interface and provides a high level filtering
* capability for channel on behalf of the channel listeners.
* Channel listeners can provide a filter object to the channel when
* they are registering with the channel. Channel will not deliver the
* events which is not accepted by this filter.
* A filter object can be an instance of this ChannelEventFilter class or
* an instance of another class which implements Filter interface. Developers
* can build their own low level and detailed filters by using other event
* properties.
* This class provides a high level filtering by using event type (the Class
* that event object belongs), talker type (the Class that the source of event
* belongs), and talker's name (string which is returned by talker object's
* "toString() method).
* Channel listener can also stop listening the channel temporarily without
* unregistration with the channel by using this filter class.
*/

public class ChannelEventFilter implements ChannelFilter
{
 /**
 * Keeps the accepted event types with no talker type or name restriction.
 */
 private Set unrestrictedEventTypes = Collections.synchronizedSet(new HashSet());

 /**
 * Keeps the accepted talker types with no talker type or event type
 * restriction.
 */
 private Set unrestrictedTalkerTypes = Collections.synchronizedSet(new HashSet());

 /**
 * Keeps the accepted talkler names
 */
 private Set acceptedTalkerNames = Collections.synchronizedSet(new HashSet());

 /**
 * Keeps the accepted talker types with their accepted names.
 */
 private Vector talkerTypeNamePairs = new Vector ();

 /**
 * Keeps the accepted event types with their accepted talkers' types
 * and names.
 */
 private Vector talkerEventPairs = new Vector ();

111

 /**
 * It is used to stop or restart accepting events
 */
 private boolean denyAllFlag = false;

 /**
 * This method is used to add an accepted event class without
 * any further restriction.All events which belong to this class
 * are accepted by filter without looking their talker's class or
 * names
 * @param eventType event class to be accepted
 */
 public void addAcceptedEvent(Class eventType)
 {
 unrestrictedEventTypes.add(eventType);
 }// end of addAcceptedEvent() method

 /**
 * This method is used to add an accepted talker according to
 * its name. Talker name is obtained from toString() method of object.
 * @param talkerName name of the talker to be accepted
 */
 public void addAcceptedTalker(String talkerName)
 {
 acceptedTalkerNames.add(talkerName);
 }// end of addAcceptedTalker() method

 /**
 * This method is used to add an accepted talker class without
 * any further restriction.All events which are coming from this
 * talker class are accepted by filter without looking their talker's
 * names or event classes.
 * @param talkerType talker class to be accepted
 *
 */
 public void addAcceptedTalker(Class talkerType)
 {
 unrestrictedTalkerTypes.add(talkerType);
 }// end of addAcceptedTalker() method

 /**
 * This method is used to add an accepted talker class with its
 * name.All events which are coming from this talker class and
 * specified name are accepted by filter without looking their
 * event classes.
 * @param talkerType talker class to be accepted
 * @param talkerName talker's name belongs to accepted talker class
 */
 public void addAcceptedTalker(Class talkerType, String talkerName)
 {

112

 TalkerTypeNamePair newItem = new TalkerTypeNamePair(talkerType,talkerName);
 if(!talkerTypeNamePairs.contains(newItem))
 {
 talkerTypeNamePairs.add(newItem);
 }
 }// end of addAcceptedTalker() method

 /**
 * This method is used to add an accepted event class with its
 * specified talker class.All events which belongs to this event
 * class and coming from specified talker class are accepted by filter.
 * @param talkerType talker's class of the accepted pair.
 * @param eventType event's class of the accepted pair.
 */
 public void addAcceptedTalkerEventPair(Class talkerType, Class eventType)
 {
 TalkerEventTypePair newPair = new TalkerEventTypePair(talkerType,eventType);
 if(! talkerEventPairs.contains(newPair))
 {
 talkerEventPairs.add(newPair);
 }
 }// end of addAcceptedTalkerEventPair() method

 /**
 * This method is used to add an accepted event class with its
 * specified talker class and name.All events which belongs to this event
 * class and coming from specified talker class and name are accepted
 * by filter.
 * @param talkerType talker's class of the accepted pair.
 * @param talkerName talker's name of the accepted pair
 * @param eventType event's class of the accepted pair.
 */
 public void addAcceptedTalkerEventPair(Class talkerType,
 String talkerName,
 Class eventType)
 {

 TalkerEventTypePair newPair = new TalkerEventTypePair(talkerType,
 talkerName,
 eventType);
 if(! talkerEventPairs.contains(newPair)){
 talkerEventPairs.add(newPair);
 }
 }// end of addAcceptedTalkerEventPair() method

 /**
 * This method is used to remove the accepted event classes which were added
 * by "addAcceptedEventType" method.
 * @param eventType event class to be removed
 */
 public void removeAcceptedEvent(Class eventType)

113

 {
 if(unrestrictedEventTypes.contains (eventType))
 {
 unrestrictedEventTypes.remove(eventType);
 }
 else
 {
 System.out.println("There is no such event-type");
 }
 }// end of removeAcceptedEvent() method

 /**
 * This method is used to remove the accepted talker names which were added
 * by "addAcceptedTalkerName" method.
 * @param talker name to be removed
 */
 public void removeAcceptedTalker(String talkerName)
 {
 if(acceptedTalkerNames.contains (talkerName))
 {
 acceptedTalkerNames.remove(talkerName);
 }
 else
 {
 System.out.println("There is no such talker name");
 }
 }// end of removeAcceptedTalker() method

 /**
 * This method is used to remove the accepted talker classes which were added
 * without a specified talker's name.
 * @param talkerType talker class to be removed
 */
 public void removeAcceptedTalker(Class talkerType)
 {
 if(unrestrictedTalkerTypes.contains (talkerType))
 {
 unrestrictedTalkerTypes.remove(talkerType);
 }
 else{
 System.out.println("There is no such talker-type");
 }
 }// end of removeAcceptedTalker() method

 /**
 * This method is used to remove the accepted talker classes which were added
 * with a specified talker's name.
 * @param talkerType talker class to be removed
 * @param talkerName talker's name

114

 */
 public void removeAcceptedTalker(Class talkerType, String talkerName)
 {
 TalkerTypeNamePair removedItem = new TalkerTypeNamePair (talkerType,
 talkerName);
 if(talkerTypeNamePairs.contains (removedItem))
 {
 unrestrictedTalkerTypes.remove(removedItem);
 }
 else
 {
 System.out.println("There is no such talker-type");
 }
 }// end of removeAcceptedTalker() method

 /**
 * This method is used to remove an accepted event class with its
 * specified talker class.
 * @param talkerType talker class of the pair to be removed
 * @param eventType event class of the pair to be removed
 */
 public void removeAcceptedTalkerEventPair(Class talkerType, Class eventType)
 {
 TalkerEventTypePair removedPair = new
TalkerEventTypePair(talkerType,eventType);
 if(talkerEventPairs.contains(removedPair))
 {
 talkerEventPairs.remove(removedPair);
 }
 else
 {
 System.out.println("There is no such event-talker pair");
 }
 }// end of removeAcceptedTalkerEventPair() method

 /**
 * This method is used to remove an accepted event class with its
 * specified talker class and name.
 * @param talkerType talker class of the pair to be removed
 * @param talkerName talker name of the pair to be removed
 * @param eventType event class of the pair to be removed
 */
 public void removeAcceptedTalkerEventPair(Class talkerType,
 String talkerName,
 Class eventType)
 {
 TalkerEventTypePair removedPair = new TalkerEventTypePair(talkerType,
 talkerName,
 eventType);
 if(talkerEventPairs.contains(removedPair))
 {

115

 talkerEventPairs.remove(removedPair);
 }
 else
 {
 System.out.println("There is no such event-talker pair");
 }
 }// end of removeAcceptedTalkerEventPair() method

 /**
 * Filter denies all coming events, regardless of these events are acceptable
 * or not. This method provides listeners to stop accepting events from channel
 * temprorarily without unregistration with channel.
 */
 public void suspendAccepting()
 {
 denyAllFlag = true ;
 }// end of suspendAccepting() method

 /**
 * Returns the filter to its normal operation after "suspendAccepting"
 * method. Filter begins to accept events according to its existing
 * settings.
 */
 public void resumeAccepting()
 {
 denyAllFlag = false ;
 }// end of resumeAccepting() method

 /**
 * Tests if this event's properties is in the filter's database or not
 * @param event event to be tested
 * @return Returns true if filter's database contains this event type
 * or talker type, falsed otherwise.
 *
 */
 private boolean contains(ChannelEvent event)
 {
 boolean isContain = false;
 Class talkerType = event.getTalkerClass();
 Class eventType = event.getEventClass();
 if(unrestrictedTalkerTypes.contains(talkerType)||
 unrestrictedEventTypes.contains(eventType))
 {
 isContain = true;
 }
 else
 {
 if(talkerTypeNamePairs.contains(new TalkerTypeNamePair(talkerType,
 (event.getTalker()).toString())))
 {
 isContain = true;

116

 }
 else
 {
 if(talkerEventPairs.contains(new TalkerEventTypePair(talkerType,eventType))
 ||talkerEventPairs.contains(new TalkerEventTypePair(talkerType,
 (event.getTalker()).toString(),
 eventType)))
 {
 isContain = true;
 }
 else{
 isContain = false;
 }
 }
 }
 return isContain;
 }// end of contains() method

 /**
 * Remove all accepted types and clears filter's database
 */
 public void removeAll()
 {
 unrestrictedEventTypes.clear();
 unrestrictedTalkerTypes.clear();
 talkerTypeNamePairs.clear();
 talkerEventPairs.clear();
 }// end of removeAll() method

 /**
 * Test if this event is acceptable by filter or not. If this event is
 * not acceptable, channel will not deliver the event to the listener
 * which is the owner of this filter.
 * @param event event to tested
 * @return Returns true if this event is acceptable, false otherwise
 */
 public boolean isAccepted(ChannelEvent event)
 {
 if(! denyAllFlag && this.contains(event))
 {
 return true;
 }
 else
 {
 return false;
 }
 }// end of isAccepted() method

 /**
 * Data structure for creating talker-event type pairs. This structure
 * defines a event type with specific talker's type and name.

117

 *
 */
 private class TalkerEventTypePair{

 /** Keeps talker type */
 private Class talkerType;

 /** Keeps event type */
 private Class eventType;

 /** Keeps talker's name */
 private String talkerName;

 /** Default talker's name if it is not specified */
 private final static String defaultName = "ANY";

 /** Contructs a pair with default talker's name
 * @param talkerType talker type
 * @param eventType event type
 */
 TalkerEventTypePair(Class talkerType, Class eventType)
 {
 this.talkerType = talkerType;
 this.eventType = eventType;
 this.talkerName = defaultName;
 }//end of constuctor

 /** Constructs a pair with specified event type, talker type and
 * talker's name
 * @param talkerType talker type
 * @param talkerName talker's name
 * @param eventType event type
 */
 TalkerEventTypePair(Class talkerType, String talkerName,Class eventType)
 {
 this.talkerType = talkerType;
 this.eventType = eventType;
 this.talkerName = talkerName;
 }//end of constructor

 /** Overrides Object's equal method for equality checking
 * @param obj Object to be compared
 * @retuen Returns true if it is equal, false otherwise
 */
 public boolean equals(Object obj)
 {
 if(talkerType.equals(((TalkerEventTypePair)obj).talkerType)&&
 eventType.equals(((TalkerEventTypePair)obj).eventType) &&
 talkerName.equals(((TalkerEventTypePair)obj).talkerName))
 {
 return true;

118

 }
 else
 {
 return false;
 }
 }//end of () method
 }//end of TalkerEventTypePair

 /**
 * Data structure for creating a talker type with its name.
 */
 private class TalkerTypeNamePair{

 /** Keeps talker type */
 private Class talkerType;

 /** keeps talker's name */
 private String talkerName;

 /** Contructs a talker type with its name
 * @param talkerType talker type
 * @param name talker name
 */
 TalkerTypeNamePair(Class talkerType, String name)
 {
 this.talkerType = talkerType;
 this.talkerName = name;
 }//end of constructor

 /** Overrides Object's equal method for equality checking
 * @param obj Object to be compared
 * @return Returns true if it is equal, false otherwise
 */
 public boolean equals(Object obj)
 {
 if(talkerType.equals(((TalkerEventTypePair)obj).talkerType)&&
 talkerName.equals(((TalkerEventTypePair)obj).talkerName))
 {
 return true;
 }
 else
 {
 return false;
 }
 }// end of equals() method
 }//end of TalkerTypeNamePair
}//end of ChannelEventFilter

119

package org.saamnet.channel;

/*
* FIFOScheduler class simply buffers arriving events into a First In First Out
* (FIFO) queue. Events are served by their arriving orders. FIFOScheduler is
* default scheduler for channel when another scheduler is not specified.
*/

public class FIFOScheduler implements ChannelScheduler
{

 /*
 * Stores channel events
 */
 private FIFOQueue queue;

 /**
 * default size of the queue
 */
 public static final int DEFAULT_SIZE = 1000;

 /*
 *Keeps the max queue size
 */
 private int maxSize = DEFAULT_SIZE ;

 /*
 * Constructs an FIFOScheduler with default queue size
 */
 public FIFOScheduler ()
 {
 this.queue = new FIFOQueue (maxSize);
 }// end of constructor

 /*
 * Constructs an FIFOScheduler with specified queue size
 */
 public FIFOScheduler (int queueSize)
 {
 maxSize = queueSize;
 this.queue = new FIFOQueue (maxSize);
 }// end of constructor

 /*
 * Enqueue a channel event into FIFO queue
 * @param event Channel event to be enqueued
 */
 public boolean push(ChannelEvent event)
 {
 if (getSize() >= maxSize)
 {

120

 System.out.println("FIFOScheduler droped a packet due "+
 "to buffer overflow");
 return false;
 }
 else
 {
 queue.enqueue(event);
 return true;
 }
 }//end of push() method

 /*
 * Dequeue a channel event from FIFO queue
 * @return Returns the channel event at the top of queue
 */
 public ChannelEvent pull ()
 {
 return (ChannelEvent) queue.dequeue();
 }//end of pull() method

 /*
 * Gets the number of events in the queue
 * @return Returns the number of channel events in the queue.
 */
 public int getSize()
 {
 return queue.getSize();
 }//end of getSize() method

}//end of FIFOScheduler

/**
 * this class implements a FIFO queue
 * Jan2000 [Uysal, Xie] - Created
 */
class FIFOQueue
{

 /**
 * default size of the queue
 */
 public static final int DEFAULT_SIZE = 1000;

 /**
 * max size of the queue
 */
 private int maxSize;

 /**
 * Keeps lost items

121

 */
 private int lossCount;

 /**
 * current size of the queue
 */
 private int size;

 private FifoQueueItem first, last, current;

 /**
 * parameterless constructor of the class
 */
 public FIFOQueue()
 {
 maxSize = this.DEFAULT_SIZE;
 size = lossCount = 0;
 first = last = current = null;
 }//end constructor

 /**
 * parameter constructor
 * @param queuesize int size of the queue
 */
 public FIFOQueue(int queuesize)
 {
 maxSize = queuesize;
 size = lossCount = 0;
 first = last = current = null;
 }//end constructor

 /**
 * queues a new packet
 * @param packet Object
 */
 public synchronized void enqueue(Object packet)
 {

 //If size exeeds the maxSize
 //we need to drop the packet since there is no place in the queue
 if (size >= maxSize)
 {
 lossCount++;
 return;
 }

 size++;

 FifoQueueItem newItem = new FifoQueueItem(packet);

122

 if (first == null)
 {
 first = last = newItem;
 }
 else
 {
 current = last;
 current.next = newItem;
 newItem.previous = current;
 last = newItem;
 }//end else

 }//end enqueue()

 /**
 * removes the first packet from the queue
 * @return Object
 */
 public synchronized Object dequeue()
 {

 if(first != null)
 {
 size--;
 current = first;
 if (first.next == null)
 {//item is also the last
 first = last = null;
 }
 else
 {
 first = current.next;
 first.previous = null;
 }

 return current.data;
 }//end if
 return null;
 }//end method dequeue()

 /**
 * Returns the Object at head of queue.
 * Under heavy loading, <code>peek</code> may find the queue empty
 * and the return will cause a NullPointerException to be thrown.
 * @return Object
 */
 public Object peek()
 {
 try

123

 {
 return first.data;
 }
 catch(NullPointerException npe)
 {
 System.out.println("****[DIAG MSG]*** FIFOQueue.peek(): No enqueued packet
found. ***");
 throw new NullPointerException();
 }
 }//end method peek()

 /**
 * returns the size of the queue
 * @return int
 */
 public int getSize()
 {
 return size;
 }//end mthod getSize()

 /**
 * returns true if the queue is empty
 * @return boolean
 */
 public synchronized boolean isEmpty()
 {
 return (size == 0);
 }//end isEmpty()

 /**
 * returns the max size of the queue
 * @return int
 */
 public int getMaxQueueSize()
 {
 return this.maxSize;
 }//end method getMaxQueueSize()

 /**
 * changes the max queue size setting
 * @param newSize int size to be set
 */
 public synchronized void setMaxQueueSize(int newSize)
 {
 //max size should be at least 1
 if (newSize < 1)
 {
 return;
 }

124

 this.maxSize = newSize;
 }//end method setQueueSize()

 /**
 * returns the int packet loss count of the queue
 * @return int
 */
 public int getLossCount()
 {
 return this.lossCount;
 }//end method getLossCount()

 /**
 * resets the packet loss count to 0
 */
 public synchronized void clearLossCount()
 {
 this.lossCount = 0;
 }//end method clearLossCount()

 /**
 * return a string representation of the queue
 * @return String
 */
 public String toString()
 {
 return "FIFO Queue";
 }//end method toString()

}//end class FIFOQueue

class FifoQueueItem
{
 public Object data;
 public FifoQueueItem next,previous;

 public FifoQueueItem(Object packet)
 {
 data = packet;
 next = null;
 previous = null;
 }//end constructor
}//end class QueueItem

//end file FIFOQueue

125

package org.saamnet.channel;

/*
* It offers a fair serving distribution between channel talkers.
* A priority queue is created for each talker. Arriving events are buffered
* in appropriate queue in accordance with their talkers. Scheduler extracts
* events from talker queues based on a round-robin algorithm.
*/
import java.util.*;

public class PerTalker_RR_Scheduler implements ChannelScheduler {

 /*
 * Keeps channel talkers
 */
 private Vector talkerQueues;

 /*
 * Keeps the channel which this scheduler is used.
 */
 private Channel parentChannel;

 /**
 * default size for talker queues
 */
 public static final int DEFAULT_SIZE = 1000;

 /*
 *Keeps the max queue size for talker queues
 */
 private int maxSize = DEFAULT_SIZE ;

 /*
 * Indicates the current talker to be served
 */
 private int currentTalkerIdx = 0;

 /*
 * Constructs a PerTalker_RR_Scheduler with default talker queue size
 */
 public PerTalker_RR_Scheduler()
 {
 this.talkerQueues = new Vector();
 }// end of constructor

 /*
 * Constructs a PerTalker_RR_Scheduler with specified queue size
 * @param q_size The size of talker queues
 */
 public PerTalker_RR_Scheduler(int q_Size)

126

 {
 this.talkerQueues = new Vector();
 this.maxSize = q_Size;
 }// end of constructor

 /*
 * Sets the parent channel that this scheduler belongs.
 * This scheduler will be active after setting the parent channel.
 * Channel automatically calls this method if its scheduler type
 * is PerTalker_RR_Scheduler
 * @param parent Parent channel of this scheduler
 */
 public void setParentChannel(Channel parent)
 {
 this.parentChannel = parent;
 updateTalkerQueues();
 }//end of setParentChannel() method

 /*
 * This methods updates the talkers vector of scheduler. Updating necessary if
 * new talker is added to channel.
 */
 private void updateTalkerQueues()
 {
 Vector copy = (Vector) (parentChannel.getTalkers()).clone();
 Enumeration e = copy.elements();
 while(e.hasMoreElements())
 {
 Object tempElement = e.nextElement();
 TalkerQueue temp = new TalkerQueue (tempElement,maxSize);
 if(! talkerQueues.contains(temp))
 {
 talkerQueues.add (temp);
 }
 }
 }//end of updateTalkerQueues() method

 /*
 * Inserts an event to appropriate talker queue by checking
 * event's talker.
 * @param event Channel event
 * @return Returns true if insertion is successful,returns false
 * if a talker queue, which is matching with talker of this event,
 * could not been found.
 */
 private boolean insert(ChannelEvent event)
 {
 boolean result = false ;
 TalkerQueue temp = new TalkerQueue (event.getTalker(),maxSize);
 if(! talkerQueues.contains(temp))

127

 {
 updateTalkerQueues();
 }
 Enumeration e = talkerQueues.elements();
 while(e.hasMoreElements())
 {
 TalkerQueue tempElement = (TalkerQueue) e.nextElement();
 if((tempElement.getTalker()).equals(event.getTalker()))
 {
 if(tempElement.enqueue(event))
 {
 result=true;
 }
 else
 {
 result=false;
 }
 break;
 }
 }
 return result;
 }//end of insert() method

 /*
 * Pushes an event to appropriate talker queue by using "insert"
 * method. If insertion is failed, updates talker queues and tries again.
 * Channel quarantees that only registered talkers can be talk on channel.
 * @param event Channel event
 */
 public boolean push(ChannelEvent event)
 {
 if(parentChannel == null) return false;
 return insert(event);
 }//end of push() method

 /*
 * Extracts events from talker queues based on a round-robin algorithm.
 * @return Returns a channel event.
 */
 public ChannelEvent pull()
 {
 int index = currentTalkerIdx;
 if(talkerQueues.isEmpty()) return null;
 while(((TalkerQueue) talkerQueues.elementAt(index)).isEmpty())
 {
 index++;
 if(index == talkerQueues.size())
 {
 index=0;
 }
 if(index == currentTalkerIdx)

128

 {
 return null;
 }
 }

 ChannelEvent event = ((TalkerQueue) talkerQueues.elementAt(index)).dequeue();
 index ++;
 if(index == talkerQueues.size())
 {
 currentTalkerIdx=0;
 }
 else {
 currentTalkerIdx=index;
 }
 return event;
 }//end of pull() method

 /*
 * Gets the total number of events in talker queues
 * @return Returns the number of channel events in the queue.
 */
 public int getTotalSize()
 {
 int totalSize = 0;
 Enumeration e = talkerQueues.elements();
 while(e.hasMoreElements())
 {
 TalkerQueue tempElement = (TalkerQueue) e.nextElement();
 totalSize +=tempElement.getSize();
 }
 return totalSize;
 }//end of getTotalSize() method

}//end of PerTalker_RR_Scheduler

/*
* This class is a data structure to keep channel talker and its event queue.
*/
class TalkerQueue
{
 /*
 * Keeps talker object.
 */
 private Object talker;

 /*
 *Keeps the max queue size for talker queue.
 */
 private int max;

129

 /*
 * Stores events, which are belong to the talker.
 * In here Channel Priority Scheduler is used as a priority.
 * PriorityScheduler can be also used an stable priority queue.
 */
 private PriorityScheduler talkerPriorityQueue;

 /*
 * Constructs an talker queue associated with a channel talker
 * @param talker Channel talker
 * @param queueSize maximum size of talker's event queue
 */
 TalkerQueue (Object talker, int queueSize)
 {
 this.talker=talker;
 max = queueSize;
 this.talkerPriorityQueue= new PriorityScheduler(max);
 }//end of constructor

 /*
 * Enqueues an event to talker's event queue
 * @param event Channel event
 */
 public boolean enqueue(ChannelEvent event)
 {
 //If size exeeds the maxSize
 //we need to drop the packet since there is no place in the queue
 if (talkerPriorityQueue.getSize() >= max)
 {
 System.out.println("PerTalkerRoundRobinScheduler droped a packet due "+
 "to talker queue overflow "+
 "\nTalker Name : "+ talker);
 return false;
 }
 else
 {
 talkerPriorityQueue.push(event);
 return true;
 }
 }//end of enqueue() method

 /*
 * Dequeues an event from talker's event queue
 * @return Returns a channel event
 */
 public ChannelEvent dequeue()
 {
 return (ChannelEvent) talkerPriorityQueue.pull();
 }//end of dequeue() method

 /*

130

 * Enqueues an event to talker's event queue
 * @return Returns the talker object encapsulated by this class
 */
 public Object getTalker()
 {
 return this.talker;
 }//end of getTalker() method

 /*
 * Tests if the talker's event queue is empty or not
 * @return Returns true if talker queue is empty, else false
 */
 public boolean isEmpty()
 {
 return talkerPriorityQueue.isEmpty();
 }//end of isEmpty() method

 /*
 * Gets the number of events in the talker's event queue
 * @return Returns the number of channel events in the talker's event queue.
 */
 public int getSize()
 {
 return talkerPriorityQueue.getSize();
 }//end of getSize() method

 /*
 * Overrides Object's "equals" method
 */
 public boolean equals(Object obj)
 {
 if(this.talker == obj)
 {
 return true;
 }
 else{
 return false;
 }
 }//end of equals() method

}//end of TalkerQueue

131

package org.saamnet.channel;

import com.objectspace.jgl.PriorityQueue;
import com.objectspace.jgl.BinaryPredicate;

/*
* Events are buffered in a priority queue in accordance with their priority.
* Events with highest priority will serve first. This scheduler can be used
* to give channel delivery precedence to particular event types.
*/

public class PriorityScheduler implements ChannelScheduler
{

 /*
 * Stores channel events
 */
 private PriorityQueue queue;

 /*
 * PriorityQueue is not stable(uses heap sort).This index
 * is used to make PriorityQueue stable
 */
 private int heapIndex = Integer.MIN_VALUE;

 /**
 * default size of the queue
 */
 public static final int DEFAULT_SIZE = 1000;

 /*
 *Keeps the max queue size
 */
 private int maxSize = DEFAULT_SIZE ;

 /*
 * Constructs a priority scheduler
 */
 public PriorityScheduler ()
 {
 queue = new PriorityQueue (new ChannelPriorityComparator());
 }// end of constructor

 /*
 * Constructs a priority scheduler
 */
 public PriorityScheduler (int qSize)
 {
 queue = new PriorityQueue (new ChannelPriorityComparator());
 maxSize = qSize;

132

 }// end of constructor

 /*
 * Insert a channel event to priority queue
 * @param event Channel event
 */
 public boolean push(ChannelEvent event)
 {
 //If size exeeds the maxSize
 //we need to drop the packet since there is no place in the queue
 if (getSize() >= maxSize)
 {
 System.out.println("Priority Scheduler droped a packet due "+
 "to queue overflow");
 return false;
 }

 synchronized(queue)
 {
 //reset index if it reaches the max number
 if(heapIndex == Integer.MAX_VALUE)
 {
 heapIndex = Integer.MIN_VALUE;
 PriorityQueue temp = new PriorityQueue(queue);
 queue.clear();
 while(!temp.isEmpty())
 {
 PriorityHeapItem tempItem = (PriorityHeapItem) temp.pop();
 tempItem.setIndex(heapIndex);
 queue.push(tempItem);
 heapIndex++;
 }
 }
 PriorityHeapItem item = new PriorityHeapItem(event,heapIndex);
 heapIndex++;
 queue.push(item);
 }
 return true;
 }//end of push() method

 /*
 * Extracts an event from priority queue (highest priority)
 * @return Returns the channel event, which has highest priority.
 */
 synchronized public ChannelEvent pull ()
 {
 if(queue.isEmpty()) return null;
 return ((PriorityHeapItem) queue.pop()).getEvent();
 }//end of pull() method

 /*

133

 * Gets the number of events in the queue
 * @return Returns the number of channel events in the queue.
 */
 public int getSize()
 {
 return queue.size();
 }//end of getSize() method

 /**
 * Return true if I contain no objects.
 */
 public boolean isEmpty()
 {
 return queue.isEmpty();
 }//end of isEmpty() method

 /*
 * This class is the data structure to encapsulate event,event priority,
 * talker priority and order index.
 */
 class PriorityHeapItem
 {
 /**
 *Keeps the channel event
 */
 private ChannelEvent event;

 /**
 *Keeps the index that is associated with this event
 */
 private int index;

 /**
 *Contructs a priority heap item,which is associated with an index
 *@param channelEvent A channel event
 *@param idx The index to be associated with the event
 */
 PriorityHeapItem(ChannelEvent channelEvent, int idx){
 this.event = channelEvent;
 this.index = idx;
 }//end of constructor

 /**
 *Sets the index for this event
 *@param idx index
 */
 void setIndex (int idx){
 this.index = idx;
 }//end of setIndex() method

 /**

134

 *Gets the event.
 *@return Returns the event that is encapsulated by this heap item
 */
 ChannelEvent getEvent(){
 return event;
 }//end of getEvent() method

 /**
 *Gets the priority of this encapsulated event.
 *@return Returns the priority of this event
 */
 int getEventPriority(){
 return event.getEventPriority();
 }//end of getEventPriority() method

 /**
 *Gets the talker of this encapsulated event.
 *@return Returns the talker of this event
 */
 int getTalkerPriority(){
 return event.getTalkerPriority();
 }//end of getTalkerPriority() method

 /**
 *Gets the index of this item.
 *@return Returns the index of this item.
 */
 int getIndex(){
 return index;
 }//end of getIndex() method

 }//end of PriorityHeapItem

 /*
 * This class implements BinaryPredicate and is passed to priority
 * queue for comparing queue items.
 */
 class ChannelPriorityComparator implements BinaryPredicate
 {
 /*
 * Compares two priority queue item
 * @param first First item to be compared
 * @param second Second item to be compared
 * @return Returns true if the first item is less than the second item,
 * else false.
 */
 public boolean execute(Object first, Object second)
 {
 boolean flag = false;
 PriorityHeapItem firstEvent = (PriorityHeapItem)first;

135

 PriorityHeapItem secondEvent = (PriorityHeapItem)second;
 //check talker priority
 if(firstEvent.getTalkerPriority() > secondEvent.getTalkerPriority())
 {
 flag = false;
 }
 else
 {
 if(firstEvent.getTalkerPriority() < secondEvent.getTalkerPriority())
 {
 flag = true;
 }
 else {
 //check event priority if the talker priorities are equal
 if(firstEvent.getEventPriority() > secondEvent.getEventPriority())
 {
 flag = false;
 }
 else
 {
 if(firstEvent.getEventPriority() < secondEvent.getEventPriority())
 {
 flag = true;
 }
 else
 {
 //check index numbers if the event priorities are equal
 if(firstEvent.getEventPriority() == secondEvent.getEventPriority())
 {
 if(firstEvent.getIndex() < secondEvent.getIndex())
 {
 flag = false;
 }
 else
 {
 flag = true;
 }
 }
 }
 }
 }
 }
 return flag;
 }//end of () method
 }//end of ChannelPriorityComparator
}//end of PriorityScheduler

136

package org.saamnet.channel;

/**
 * This interface provides a framework to control and organize all channels
 * and their participants of an application in a centralized manner. It defines
 * five methods to be implemented by such a centralized channel controller.
 */

public interface ChannelManagerAuthority
{

 /**
 * This method allows a channel controller component to specify permissions
 * for talking on all the channels.
 * @param talkerClassName the class name of talker.
 * @param channel_id channel identification number
 * @return Returns true if this talker is authorized on specified channel
 * else false.
 */
 public boolean isTalkerAuthorized (String talkerClassName, int channel_id);

 /**
 * This method allows a channel controller component to specify permissions
 * for listening on all the channels.
 * @param listenerClassName the class name of talker.
 * @param channel_id channel identification number
 * @return Returns true if this listener is authorized on specified channel
 * else false.
 */

 public boolean isListenerAuthorized (String listenerClassName, int channel_id);

 /**
 * This method allows a channel controller component to stipulate the talker
 * priority.
 * @param talkerClassName the class name of talker.
 * @return Return the priority of specified talker
 */
 public int getTalkerPriority(String talkerClassName);

 /**
 * This method allows a channel controller component to stipulate the listener
 * priority.
 * @param listenerClassName the class name of listener.
 * @return Return the priority of specified listener.
 */
 public int getListenerPriority(String listenerClassName);

 /**
 * This method allows a channel controller component to specify proper channel

137

 * scheduler, which is installed for the channel.
 * @param channel_id channel identification number
 * @return Return proper channel scheduler
 */
 public ChannelScheduler getSchedulerForChannel(int channel_id);

}//end of ChannelManagerAuthority

138

package org.saamnet.channel;

import java.util.Hashtable;
import java.util.Enumeration;
import java.awt.*;
import javax.swing.*;

/**
 * The ChannelManager class was developed to provide a common interface for
 * channel participants in large applications. Basically, this class manages
 * channels by keeping a table of existing channels, creating new channels
 * when it is required, and overriding the Channel class methods with an
 * extra argument to allow the desired channel to be identified simply by
 * its channel_id. A ChannelManager can also be used to control access to
 * channels and enforce predefined priorities for channel talkers and listeners
 * when it is constructed with a channel access authority.
 */
public class ChannelManager
{

 /**
 * Keeps the member channels
 */
 private Hashtable memberChannels;

 /**
 * Keeps the manager authority if it was provided
 */
 private ChannelManagerAuthority authority ;

 /**
 * Indicates that this manager has an authority or not.
 */
 private boolean hasAuthority = false;

 /**
 * Keeps debug statements
 */
 private JTextArea debugText = new JTextArea();

 /**
 * Constructs a ChannelManager object without an authority
 */
 public ChannelManager()
 {
 memberChannels = new Hashtable();
 }// end of constructor

 /**
 * Constructs a ChannelManager object with an authority

139

 * @param managerAuthority The authority for this ChannelManager object
 */
 public ChannelManager(ChannelManagerAuthority managerAuthority)
 {
 memberChannels = new Hashtable();
 authority = managerAuthority ;
 hasAuthority = true;
 }// end of constructor

 /**
 * Talker use this method to push an event to specified channel in form of
 * ChannelEvent object.
 * @param event An instance of ChannelEvent class
 * @param channel_id Channel identification number
 */
 public void talk(ChannelEvent event, int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 //if it is a unregistered talker, it will be refused by channel.
 if(memberChannels.containsKey(key_id))
 {
 ((Channel) memberChannels.get(key_id)).talk(event);
 }
 else
 {
 System.out.println("There is no channel to talk with this specified id:"+
 channel_id);
 }
 }//end of talk() method

 /**
 * Talkers use this method to push an event to specified channel with its priority.
 * @param talker Event owner
 * @param event Event object
 * @param priority Event priority
 * @param channel_id Channel identification number
 */
 public void talk(Object talker, Object event, int priority, int channel_id)
 {
 ChannelEvent newEvent = new ChannelEvent(talker,event,priority);
 this.talk(newEvent,channel_id);
 }//end of talk() method

 /**
 * Talkers use this method to push an event to specified channel without
 * an event priority.Channel encapsulates this event as an ChannelEvent
 * object with default priority (0).
 * @param talker Event owner
 * @param event Event object
 * @param channel_id Channel identification number
 */

140

 public void talk(Object talker, Object event, int channel_id)
 {
 ChannelEvent newEvent = new ChannelEvent(talker,event);
 this.talk(newEvent,channel_id);
 }//end of talk() method

 /**
 * Adds a new talker to specified channel with priority
 * @param talker a channel talker
 * @param priority talker priority
 * @param channel_id Channel identification number
 */
 public void addTalker(Object talker, int priority, int channel_id)
 {
 if(this.hasAuthority)
 {
 if(! authority.isTalkerAuthorized(talker.getClass().getName(),channel_id))
 {
 String warning = "***"+
 "\n!!!!!!!Unauthorized Talker :"+ talker.toString()+
 "\nChannel Id : "+channel_id+
 "\n***";
 System.out.println(warning);
 debugText.append("\n"+warning);
 return;
 }
 else
 {
 priority = authority.getTalkerPriority(talker.getClass().getName());
 }
 }
 //Only authorized talkers can reach to this point if there is an authority
 Integer key_id = new Integer(channel_id);
 String info = "A new talker was added to specified channel"+
 "\nTalker : "+talker+
 "\nPriority :"+priority+
 "\nChannel : "+ channel_id;
 if(memberChannels.containsKey(key_id))
 {
 ((Channel) memberChannels.get(key_id)).addTalker(talker,priority);
 debugText.append("\n"+info);
 }
 else
 {
 ChannelScheduler sch;
 if(this.hasAuthority)
 {
 sch = authority.getSchedulerForChannel(channel_id);
 }
 else{
 sch = new FIFOScheduler();

141

 }
 Channel newChannel = new Channel(channel_id,sch);
 memberChannels.put(key_id,newChannel);
 newChannel.addTalker(talker,priority);
 debugText.append("\n"+info);
 }
 }//end of addTalker() method

 /**
 * Adds a new talker to specified channel with default priority
 * @param talker A channel talker
 * @param channel_id Channel identification number
 */
 public void addTalker(Object talker,int channel_id)
 {
 int priority = Channel.DEFAULT_TALKER_PRIORITY;
 this.addTalker(talker,priority,channel_id);
 }//end of addTalker() method

 /**
 * Adds a new listener to specified channel in the form of ChannelListenerItem.
 * ChannelListenerItem class encapsulates a channel listener with specified
 * priority and a given filter object.
 * @param listenerItem An instance of ChannelListenerItem
 * @param channel_id Channel identification number
 */
 public void addListener(ChannelListenerItem listenerItem,int channel_id)
 {
 if(this.hasAuthority)
 {
 if(! authority.isListenerAuthorized((listenerItem.getListener()).getClass().getName(),
 channel_id))
 {
 String warning ="***"+
 "\n!!!!!!!Unauthorized Listener :"+(listenerItem.getListener()).toString()+
 "\nChannel Id : "+channel_id+
 "\n***";
 System.out.println(warning);
 debugText.append("\n"+warning);
 return;
 }
 else
 {
 int prio =
authority.getListenerPriority((listenerItem.getListener()).getClass().getName());
 listenerItem.setListenerPriority(prio);
 }

 }
 //Only authorized listeners can reach to this point if there is an authority
 Integer key_id = new Integer(channel_id);

142

 String info = "A new listener was added to specified channel"+
 "\nListener : "+listenerItem+
 "\nPriority :"+listenerItem.getListenerPriority()+
 "\nChannel : "+ channel_id;
 if(memberChannels.containsKey(key_id))
 {
 ((Channel)memberChannels.get(key_id)).addListener(listenerItem);
 debugText.append("\n"+info);
 }
 else
 {
 ChannelScheduler sch;
 if(this.hasAuthority)
 {
 sch = authority.getSchedulerForChannel(channel_id);
 }
 else
 {
 sch = new FIFOScheduler();
 }

 Channel newChannel = new Channel(channel_id,sch);
 memberChannels.put(new Integer(channel_id),newChannel);
 newChannel.addListener(listenerItem);
 debugText.append("\n"+info);
 }
 }//end of addListener() method

 /**
 * Adds a new listener to specified channel with a specified priority and
 * a given filter object
 * @param listener A channel listener
 * @param filter Listener's filter
 * @param priority Listener priority
 * @param channel_id Channel identification number
 */
 public void addListener(ChannelListener listener, ChannelFilter filter,
 int priority, int channel_id)
 {
 ChannelListenerItem newListener = new ChannelListenerItem (listener, filter, priority);
 this.addListener(newListener,channel_id);
 }//end of addListener() method

 /**
 * Adds a new listener to specified channel with a specified priority
 * @param listener A channel listener
 * @param priority Listener's priority
 * @param channel_id Channel identification number
 */
 public void addListener(ChannelListener listener,
 int priority,int channel_id)

143

 {
 ChannelListenerItem newListener = new ChannelListenerItem (listener, priority);
 this.addListener(newListener, channel_id);
 }//end of addListener() method

 /**
 * Adds a new listener to specified channel with a given filter object
 * @param listener A channel listener
 * @param filter Listener's filter
 * @param channel_id Channel identification number
 */
 public void addListener(ChannelListener listener,ChannelFilter filter,
 int channel_id)
 {
 ChannelListenerItem newListener = new ChannelListenerItem (listener,filter);
 this.addListener(newListener,channel_id);
 }//end of addListener() method

 /**
 * Adds a new listener to specified channel without priority and filter
 * @param listener A channel listener
 * @param channel_id Channel identification number
 */
 public void addListener(ChannelListener listener,int channel_id)
 {
 ChannelListenerItem newListener = new ChannelListenerItem (listener);
 this.addListener(newListener,channel_id);
 }//end of addListener() method

 /**
 * Removes a registered listener from specified channel
 * @param listener listener object to be removed
 * @param channel_id Channel identification number
 */
 public void removeListener(ChannelListener listener, int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 ((Channel)memberChannels.get(key_id)).removeListener(listener);
 }
 else
 {
 System.out.println("There is no channel with this id for removing the listener" +
 "\n Unfound channel id: "+ channel_id);
 }
 }//end of removeListener() method

 /**
 * Removes a registered talker from specified channel
 * @param talker Talker object to be removed

144

 * @param channel_id Channel identification number
 */
 public void removeTalker(Object talker, int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 ((Channel)memberChannels.get(key_id)).removeTalker(talker);
 }
 else
 {
 System.out.println("There is no channel with this id for removing the talker" +
 "\n Unfound channel id: " + channel_id);
 }
 }//end of removeTalker() method

 /**
 * Add the specified filter object to desired channel listener.
 * @param listener Channel listener
 * @param newFilter Filter object,which will be added to listener
 * @param channel_id Channel identification number
 */
 public void addListenerFilter(ChannelListener listener, ChannelFilter filter, int
channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 ((Channel)memberChannels.get(key_id)).addFilter(listener,filter);
 }
 else
 {
 System.out.println("There is no channel with this id for adding a listener filter" +
 "\n Unfound channel id: " + channel_id);
 }
 }//end of addListenerFilter() method

 /**
 * Remove the specified filter object from desired channel listener.
 * @param listener Channel listener
 * @param oldFilter Filter object,which will be removed from the listener
 * @param channel_id Channel identification number
 */
 public void removeListenerFilter(ChannelListener listener, ChannelFilter filter, int
channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 ((Channel)memberChannels.get(key_id)).removeFilter(listener,filter);
 }

145

 else
 {
 System.out.println("There is no channel with this id for removing a listener filter" +
 "\n Unfound channel id:"+ channel_id);
 }
 }//end of removeListenerFilter() method

 /**
 * Remove all filter objects from desired channel listener.
 * @param listener Channel listener
 * @param channel_id Channel identification number
 */
 public void removeAllListenerFilters(ChannelListener listener,int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id)){
 ((Channel)memberChannels.get(key_id)).removeAllFilters(listener);
 }
 else
 {
 System.out.println("There is no channel with this id for removing all listener filters" +
 "\n Unfound channel id:"+ channel_id);
 }
 }//end of removeAllListenerFilters() method

 /**
 * Starts self-dispatching for a listener on specified channel
 * @param listener Channel listener to be upgraded to self dispatching
 * @param channel_id Channel identification number
 */
 public void startListenerSelfDispatch(ChannelListener listener, int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 ((Channel)memberChannels.get(key_id)).startListenerSelfDispatch(listener);
 }
 else
 {
 System.out.println("There is no channel with this id for starting self-dispatching" +
 "\n Unfound channel id:"+ channel_id);
 }
 }//end of startListenerSelfDispatch() method

 /**
 * Suspends self-dispatching for a listener on specified channel.
 * @param listener Channel listener to be downgraded to channel dispatching
 * by suspending
 * @param channel_id Channel identification number
 */
 public void suspendListenerSelfDispatch(ChannelListener listener, int channel_id)

146

 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 ((Channel)memberChannels.get(key_id)).suspendListenerSelfDispatch(listener);
 }
 else
 {
 System.out.println("There is no channel with this id for suspending self-dispatching"
+
 "\n Unfound channel id:"+ channel_id);
 }
 }//end of suspendListenerSelfDispatch() method

 /**
 * Resumes a suspended self-dispatcher for a listener on specified channel.
 * @param listener Channel listener to be upgraded to self-dispatching
 * by resuming its existing suspended self-dispatcher
 * @param channel_id Channel identification number
 */
 public void resumeListenerSelfDispatch(ChannelListener listener, int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id)){
 ((Channel)memberChannels.get(key_id)).resumeListenerSelfDispatch(listener);
 }
 else{
 System.out.println("There is no channel with this id for resuming self-dispatching" +
 "\n Unfound channel id:"+ channel_id);
 }
 }//end of resumeListenerSelfDispatch() method

 /**
 * Stops self-dispatching for a listener on specified channel.
 * This process will end the self-dispatching thread.
 * @param listener Channel listener to be downgraded to channel dispatching
 * by stopping self-dispatching
 * @param channel_id Channel identification number
 */
 public void stopListenerSelfDispatch(ChannelListener listener, int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 ((Channel)memberChannels.get(key_id)).stopListenerSelfDispatch(listener);
 }
 else
 {
 System.out.println("There is no channel with this id for stopping self-dispatching" +
 "\n Unfound channel id:"+ channel_id);
 }

147

 }//end of stopListenerSelfDispatch() method

 /**
 * Test if the specified channel has any registered listener
 * @param channel_id Channel identification number
 * @return Returns true if this channel has any registered listener,
 * false otherwise
 */
 public boolean hasListeners(int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 return ((Channel)memberChannels.get(key_id)).hasListeners();
 }
 else
 {
 System.out.println("There is no channel with this id " +
 "\n Unfound channel id:"+ channel_id);
 return false;
 }
 }//end of hasListeners() method

 /**
 * Test if the specified channel has any registered talker
 * @param channel_id Channel identification number
 * @return Returns true if this channel has any registered talker,
 * false otherwise
 */
 public boolean hasTalkers(int channel_id)
 {
 Integer key_id = new Integer(channel_id);
 if(memberChannels.containsKey(key_id))
 {
 return ((Channel)memberChannels.get(key_id)).hasTalkers();
 }
 else
 {
 System.out.println("There is no channel with this id " +
 "\n Unfound channel id:"+ channel_id);
 return false;
 }
 }//end of hasTalkers() method

 /**
 * Gets the member channels.
 * @return Returns member channels.
 */
 public Hashtable getMemberChannels()
 {
 return (Hashtable) memberChannels.clone();

148

 }//end of getMemberChannels() method

 /**
 * Test if this channel manager has an authority.
 * @return Returns true if this channel manager has an authority,
 * false otherwise
 */
 public boolean hasAuthority()
 {
 return hasAuthority;
 }//end of hasAuthority() method

 /**
 * Gets channel manager debug statements
 * @return Returns channel manager debug statements
 */
 public JTextArea getManagerDebugText()
 {
 return debugText;
 }//end of getManagerDebugText() method

 /**
 * Removes a listener from all channels.
 * @param listener Listener object to be removed
 */
 public void removeListenerFromAllChannel(ChannelListener listener)
 {
 Enumeration e = memberChannels.elements();
 while(e.hasMoreElements())
 {
 Channel ch = (Channel) e.nextElement();
 if(ch.isRegisteredListener(listener))
 {
 ch.removeListener(listener);
 }
 }
 }//end of removeListenerFromAllChannel() method

 /**
 * Removes a talker from all channels.
 * @param talker Talker object to be removed
 */
 public void removeTalkerFromAllChannel(Object talker)
 {
 Enumeration e = memberChannels.elements();
 while(e.hasMoreElements())
 {
 Channel ch = (Channel) e.nextElement();
 if(ch.isRegisteredTalker(talker))
 {
 ch.removeTalker(talker);

149

 }
 }
 }//end of removeTalkerFromAllChannel() method

} //end of ChannelManager

150

THIS PAGE INTENTIONALLY LEFT BLANK

151

APPENDIX B. THE ADDITIONAL CLASS FOR SAAM
PROTOTYPE

package org.saamnet.saam.util;

/**
 * The PermissionTableEntry class was created to determine whether or not
 * a channel participant (a talker or listener) has access to a given
 * channel. A channel permission entry is created by providing the
 * identification number of the channel and specifying the channel participants
 * allowed to access this channel.
 */

public class PermissionTableEntry
{

 /*Keeps the identification number of the channel
 * associated with this permission entry
 */
 private int channel_id;

 /** Keeps the verified talkers */
 private String [] validTalkers ;

 /** Keeps the verified listeners */
 private String [] validListeners;

 /** Constructs a permission entry with given channel id and
 * verified channel participants
 * @param ch_id Channel id
 * @param talkers Verified talkers
 * @param listeners Verified listeners
 */
 public PermissionTableEntry (int ch_id,
 String [] talkers,
 String [] listeners)
 {

 channel_id = ch_id;
 validTalkers = talkers;
 validListeners = listeners;
 }

 /**
 * To check whether or not a talker is allowed to access this channel
 * @param talker A channel talker to be checked
 * @return Returns true if this talker is verified to access the channel
 * else false.

152

 */
 public boolean isValidTalker(String talker)
 {
 boolean result = false;
 for(int i=0;i<validTalkers.length;i++)
 {
 if(validTalkers[i].equals(talker))
 {
 result = true;
 break;
 }
 }
 return result;
 }

 /**
 * To check whether or not a listener is allowed to access this channel
 * @param listener A channel listener to be checked
 * @return Returns true if this listener is verified to access the channel
 * else false.
 */
 public boolean isValidListener(String listener){
 boolean result = false;
 for(int i=0;i<validListeners.length;i++)
 {
 if(validListeners[i].equals(listener))
 {
 result = true;
 break;
 }
 }
 return result;
 }

 /**
 * This method returns a static permission table (an array of permission table entries)
 * containing the permissions for all channels, which are currently used in SAAM
 * prototype, after the integration.
 * @return Returns current Saam channel permissions
 */
 public static PermissionTableEntry [] getSaamPermissions()
 {
 PermissionTableEntry [] permissionTable = {

 new PermissionTableEntry(80010,
 new String []{"org.saamnet.saam.control.ControlExecutive"},
 new String []{"org.saamnet.saam.router.TransportInterface"}),

 new PermissionTableEntry(80020,
 new String []{"org.saamnet.saam.router.TransportInterface",
 "org.saamnet.saam.router.Interface"},

153

 new String []{"org.saamnet.saam.router.RoutingAlgorithm"}),

 new PermissionTableEntry(80030,
 new String []{"org.saamnet.saam.router.RoutingAlgorithm"},
 new String []{"org.saamnet.saam.router.TransportInterface"}),

 new PermissionTableEntry(80040,
 new String []{"org.saamnet.saam.router.RoutingAlgorithm"},
 new String []{"org.saamnet.saam.router.Interface"}),

 new PermissionTableEntry(80050,
 new String []{"org.saamnet.saam.router.Interface"},
 new String []{"org.saamnet.saam.agent.router.Scheduler"}),

 new PermissionTableEntry(80060,
 new String []{"org.saamnet.saam.router.NetworkInterfaceCard",
 "org.saamnet.saam.router.RoutingAlgorithm"},
 new String []{"org.saamnet.saam.router.Interface"}),

 new PermissionTableEntry(80070,
 new String []{"org.saamnet.saam.agent.router.Scheduler"},
 new String []{"org.saamnet.saam.router.NetworkInterfaceCard"}),

 new PermissionTableEntry(80080,
 new String []{"org.saamnet.saam.router.NetworkInterfaceCard"},
 new String []{"org.saamnet.saam.Translator"}),

 new PermissionTableEntry(80090,
 new String []{"org.saamnet.saam.Translator",
 "org.saamnet.saam.Translator$PortListener"},
 new String []{"org.saamnet.saam.router.NetworkInterfaceCard"}),

 new PermissionTableEntry(80100,
 new String []{"org.saamnet.saam.Translator",
 "org.saamnet.saam.Translator$PortListener",
 "org.saamnet.saam.router.TransportInterface"},
 new String []{"org.saamnet.saam.control.PacketFactory"}),

 };
 return permissionTable;
 }

 /**
 * This method returns the identification number of the channel associated with this
 * entry
 * @return Returns the channel identification number.
 */
 public int getValidChannelId()
 {

154

 return channel_id;
 }

}//End of PermissionTableEntry class

155

LIST OF REFERENCES

[1] Rege, K., “Design patterns for component-oriented software development”,

EUROMICRO Conference, 1999. Proceedings. 25th, Volume: 2, 1999.

[2] Karin Högstedt, Doug Kimelman, V.T. Rajan, Tova Roth, Mark Wegman, Nan

Wang, “Optimizing Component Interaction”, ACM SIGPLAN Notices Volume

36 Issue 8, August 2001.

[3] Vrable, Dean J. and Yarger, John W., “The SAAM architecture: enabling

integrated services”, Computer Science Department, Naval Postgraduate

School, Monterey, September 1999.

[4] Grant, Palmer, “Java Event Handling”, Prentice Hall Ptr, 2001.

[5] Niemeyer, Patrick and Knudsen Jonathan, “Learning Java”, O’reilly, 2000.

[6] Object Management Group, “Corba Event Service Specification Version 1.0”,

June 2000.

[http://www.omg.org/technology/documents/spec_catalog.htm]

[7] Siegel, Jon, “CORBA 3 Fundamentals and Programming”, John Willey & Sons,

2000.

[8] Iona, “Orbix Event Programmer’s Guide”, 2001.

[http://www.iona.com/docs/manuals/orbix/33/html/orbixevents33_pguide/intro.

html]

[9] Bartlett, Dave, “Corba Junction: Corba 3.0 Notification Servive”, May 2001.

[http://www-106.ibm.com/developerworks/components/library/co-

cjct8/index.html]

[10] Paul, Hyde, “Java Thread Programming”, Sams, 1999.

[11] Goetz, Brian, “Threading lightly: Synchronization is not the enemy”, July 2001.

[http://www-106.ibm.com/developerworks/library/j-threads1]

[12] Meyer, Bertrand, Object-Oriented Software Construction, Prentice Hall, 1988.

156

[13] Berg, Daniel J. and Fritzinger, Steven, “Advanced Techniques for Java

Developers, Proven Solutions from Leading Java Experts”, John Wiley & Sons,

Inc., 1997.

[14] Object Management Group, “Corba Notification Service Specification Version

1.0”, June 2000.

[http://www.omg.org/technology/documents/spec_catalog.htm]

[15] Moon, Jae-Chul, Park Jun-Ho, Kang Soon-Ju, “An event channel-based

embedded software architecture for developing telemetric and teleoperation

systems on the WWW”, Real-Time Technology and Applications Symposium,

Proceedings of the Fifth IEEE, 1999.

[16] Zhou, Dong, Schwan, K., Eisenhauer, G., Chen, Yuan, “JECho - interactive

high performance computing with java event channels”, Parallel and Distributed

Processing Symposium, Proceedings 15th International, 2001

[17] Dao-Chang, K., Gibson, John H., “Design of a Dynamic Management

Capability for SAAM System to Support Requests For Guaranteed Quality Of

Service Traffic Routing and Recovery”, Computer Science Department, Naval

Postgraduate School, Monterey, September 2000.

157

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanliklar
Ankara, TURKEY

4. Deniz Harp Okulu Komutanligi
Kutuphanesi
Tuzla
Istanbul, TURKEY

5. Chairman, Code CS
Naval Postgraduate School

 Monterey, California

6. Prof. Geoffrey Xie, Code CS/Xg
Naval Postgraduate School
Monterey, California

7. LCDR Chris Eagle
Naval Postgraduate School
Monterey, California

8. LTJG Cihat Eryigit

Arastirma Merkezi Komutanligi
Pendik

 Istanbul, TURKEY

9. LTJG Tolga Demirtas
Deniz Harp Okulu Komutanligi

 Tuzla
 Istanbul, TURKEY

